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Abstract
Parents may adapt their offspring sex ratio in response to their own phenotype and environ-

mental conditions. The most significant causes for adaptive sex-ratio variation might

express themselves as different distributions of fitness components between sexes along a

given variable. Several causes for differential sex allocation in raptors with reversed sexual

size dimorphism have been suggested. We search for correlates of fledgling sex in an

extensive dataset on common buzzards Buteo buteo, a long-lived bird of prey. Larger

female offspring could be more resource-demanding and starvation-prone and thus the

costly sex. Prominent factors such as brood size and laying date did not predict nestling

sex. Nonetheless, lifetime sex ratio (LSR, potentially indicative of individual sex allocation

constraints) and overall nestling sex were explained by territory quality with more females

being produced in better territories. Additionally, parental plumage morphs and the interac-

tion of morph and prey abundance tended to explain LSR and nestling sex, indicating local

adaptation of sex allocation However, in a limited census of nestling mortality, not females

but males tended to die more frequently in prey-rich years. Also, although females could

have potentially longer reproductive careers, a subset of our data encompassing full individ-

ual life histories showed that longevity and lifetime reproductive success were similarly dis-

tributed between the sexes. Thus, a basis for adaptive sex allocation in this population

remains elusive. Overall, in common buzzards most major determinants of reproductive

success appeared to have no effect on sex ratio but sex allocation may be adapted to local

conditions in morph-specific patterns.

Introduction
Parents should preferentially produce the sex with the highest fitness value under the prevailing
environmental conditions [1–4]. One basic determinant of fitness is the difference in resource
demands between offspring of both sexes and the resulting difference in infant mortality under
harsh conditions [2, 5]. In consequence, parents may adapt their offspring sex ratio to the local
conditions. The conjunction of the “costly sex” and “local adaptation” hypotheses implies that
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in harsh conditions, such as prey-deficient years and in poor-quality territories, parents should
preferentially produce the less demanding sex [2, 6, 7]. Another basic fitness component is the
length of reproductive careers (timespan in which individuals attempt to reproduce). Repro-
ductive lifespan can differ between sexes and hence may explain sex-ratio variation [8]. In
birds, being raised early in the breeding season may enable one sex to recruit earlier and have a
longer reproductive career than the other sex, raised under the same conditions. In monoga-
mous species, reproductive career length is strongly correlated with fitness, thus providing an
incentive for sex allocation over the breeding season [8]. Such an allocation should lead to dif-
ferent distributions of reproductive career length between sexes. Under this “early sex hypothe-
sis”, offspring of the more rewarding sex should be produced earlier in the season than the less
rewarding sex. Finally, the lifetime reproductive success (LRS, here used as the number of
fledglings produced over the individual lifetime) is a major component of fitness and its varia-
tion gives a good impression of fitness variance in a population, albeit it does not account for
variance in pre-reproductive survival [9]. Although the overall mean LRS should be equal
between the sexes, differences in the variance and distribution of LRS between sexes would
present a cause for adaptive sex allocation.

In this study, we use a large dataset of reproductive performance and offspring sex of com-
mon buzzards Buteo buteo, encompassing the entire lifetime reproductive output of individu-
als. Common buzzards, like most birds of prey, exhibit reversed sexual size dimorphism (RSD),
with female offspring fledging up to 20% heavier and therefore probably demanding greater
parental investment than males [10–13]. Females of medium-sized birds of prey, such as
marsh harriers Circus aeruginosus and goshawks Accipiter gentilis, may accelerate the start of
their reproductive careers, if fledged early in the season [8], for similar patterns in ungulates
see [14]. Similarly, some female buzzards could have longer breeding careers and if so, the vari-
ance and other aspects of the distribution of breeding career length may differ between sexes.
An earlier study showed that female buzzards indeed may have a slightly longer reproductive
lifespan and slightly more breeding attempts than males, without differences in mean LRS [15].
With a mean brood size of two and no sign of sex-biased dispersal [16, 17] in buzzards, the
“local adaptation hypothesis” predicts increased male production under harsh conditions,
while the “early sex hypothesis” predicts increased female production earlier in the breeding
season [14].

Furthermore, common buzzards appear in three plumage morphs (dark, intermediate and
light) which are inherited in a Mendelian fashion [18, 19]. Buzzard plumage morphs differ sub-
stantially in individual fitness (intermediates having higher LRS than extreme morphs; [15,
20]), behaviour (light males are more aggressive than intermediate and dark ones; [21]), immu-
nity (intermediates have lower cellular and higher specific humoral response; Chakarov et al.
unpublished manuscript) and parasite loads [endoparasite infection intensity decreases and
ectoparasite infestation increases with melanisation; [20]. Each of these traits could influence
sex allocation but due to their possible complex interactions we refrain from directed predic-
tions about the specific sex allocation of morphs.

Here, we first search for correlates of sex ratio among variables known to influence sex allo-
cation in other systems. Among them are: Laying date (corresponding to predictions of the
“early sex hypothesis”) [8], prey availability [22, 23], and territory quality (corresponding to
predictions of the “local adaptation hypothesis”) [24, 25], as well as parental plumage morph
[26, 27] and parental age [28], being correlates of reproductive performance [15, 19]. In buz-
zards, plumage morph and prey availability are the two main drivers of reproductive invest-
ment, therefore their interaction may also be expected to affect sex allocation [15, 29–31]. We
analyse two hierarchical levels of sex variation: (1) Nestling sex allows to test hypotheses about
effects of individual offspring traits, such as laying date corresponding to the “early chick
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hypothesis”[32]. (2) Lifetime sex ratio provides us with the rare opportunity to search for
effects of lifetime reproductive strategies on offspring sex ratios and to identify potential con-
straints of adaptive sex allocation such as genetically-encoded polymorphisms or maternal
effects, although it is not a good parameter to study short-term adaptations of sex ratio. Finally,
we test whether the three previously discussed premises for adaptive sex allocation (higheroff-
spring mortality corresponding to the “costly sex hypothesis”, longer reproductive lifespan,
and higher lifetime reproductive success in either sex) are met in common buzzards.

Materials and Methods

Ethics statement
Blood samples were collected for common buzzard nestlings via venepuncture. All field studies
and animal handling were performed with permission from the local authority Kreis Gütersloh,
permit nr: 4.5.2-723-Bussard in accordance to German federal and state laws.

Study site
The study was carried out in a ca. 300 km2 area in eastern Westphalia, Germany (8°250 E and
52°060 N) between 1989 and 2012 with sex ratio data being available from 2002–2012. The hab-
itat consists of pastures and meadows, interspersed with woodlots, varying between 0.001 and
7 km2 in size [33, 34].

Population and explanatory variables
Buzzard population studies with individual identification of breeding birds in this area have
been performed since 1989 (e.g. [30, 35, 36]). Buzzards have distinctive individual plumage pig-
mentation patterns, allowing individual recognition without artificial marking. In more recent
years, photographing individuals and genetic fingerprinting of buzzard chicks were also used
to increase the resighting accuracy [37]. Buzzards, like other birds of prey, have a high breeding
site fidelity throughout their lives [38]. For all breeding buzzards, the first breeding attempt in
the study area was assumed to be the beginning of the reproductive career, and thus a mini-
mum age is known. An individual was assumed to be dead if it was not recorded in the area for
at least two consecutive years [9]. LRS for individuals with completely known breeding life-his-
tories was calculated as the total number of fledglings produced during their lifetime. Partner
change can happen between years, so LRS of female and male breeding partners can differ. Ter-
ritory quality was defined as the proportion of years a territory was occupied since it was used
for the first time [39] and is a good predictor of reproductive success [40]. Since our dataset
spans more than several generations of territory holders, we consider environmental quality to
be a substantial component of territory quality.

Common buzzards are highly territorial, specialised raptors, and density of voles, their main
prey, strongly predicts annual fluctuations in buzzard reproductive output [23, 41]. To estimate
food availability, we scored vole abundance at the beginning of the breeding season, using
three categories: low, intermediate or high. We used the re-opened holes method, where the
number of active holes per unit area is counted and no trapping is performed [42]. This score
strongly predicts the fraction of common volesMicrotus arvalis among all prey items found in
the nest when chicks are sampled (r = 0.746, df = 9, P< 0.001). Since 2002, all accessible nests
were climbed (85% of all successful broods) and nestlings ringed. Tarsus length was measured
with a calliper to the nearest 0.1 mm, wing length with a ruler to the nearest 1 mm, and weight
was taken with a Pesola spring balance to the nearest 5 g. Age of the chicks was estimated by
comparison of morphometric measurements with a standard, sex-specific growth curve [43];
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mean age at ringing 29 ± 6 days] and subtracted from day of the year in order to derive hatch-
ing and laying date estimates, assuming an incubation period of 34 days (Mebs 1964). After
ringing the nest was visited short before the estimated day of fledging to count the number of
visible fledglings. The number of fledglings of the brood is further referred to as brood size.
During the breeding season, morph of the female and male territory holders (further referred
to as mother and father) and of the nestlings were recorded. Individuals with dark head, heavily
speckled or dark breast and underwing coverts were considered as dark. Birds with dark head,
intermediately speckled breast and underwing coverts were scored as intermediate. Birds with
little or no melanisation of breast and underwing coverts, in extreme cases with light head and
upperwing coverts were scored as light. From each ringed nestling, a blood sample of ca. 200 μl
was taken via venipuncture of the brachial vein and used for DNA-sexing following a standard
protocol [44]. More than 100 samples were scored more than once to verify repeatability of
molecular sexing. DNA-sexing results were compared with morphological sexing, common in
size-dimorphic birds of prey [45]. No inconsistencies were detected between both methods.

Datasets and statistical analyses
Overall, 1780 nestlings from 881 broods were sexed. This included 43 chicks which died before
fledging and were used to test for sex-specific mortality before fledging. To explain nestling sex
ratio in the final dataset, we used binomial generalized linear mixed models with logit link. Fac-
tors used to explain nestling sex were the morphs of both parents and of the nestling, and
annual vole score. The age of both parents (i.e. current length of their reproductive career),
date of laying, brood size and territory quality were entered as covariates. The final dataset with
data available for all variables contained 1678 nestlings. Brood and mother identities were
entered as nested random factors in order to account for potential non-independence of sibling
sexes. Lifetime sex ratio was computed as the proportion of males among hatchlings produced
during the lifetime of a parent. Individual-specific explanatory variables were lifetime repro-
ductive success (LRS), the individual’s and partner’s melanin morphs (in case of multiple part-
ners the mean morph of the partners was computed with light and dark considered as
extremes and intermediates as being 50% of both extremes), the length of the individual repro-
ductive career (longevity) and territory quality, after assuring that included individuals had not
switched territories.

LRS, observed longevity (corresponding to the length of the reproductive career in our data)
and lifetime sex ratio were analysed for 109 mothers of 432 nestlings and 94 fathers of 384 nest-
lings with fully known life histories and where all offspring were sexed. These datasets include
only individuals which have started breeding after 2001 and therefore have no overlap with a
sample from the same population used for previous LRS analyses [15]. Lifetime sex ratio was
analysed with GLMMs with Gaussian distribution with cohort of the individual included as a
random term. A complete description of all datasets and models is included in Tables 1–5.

Maximal models contained all variables without missing values in the final dataset. Model
selection was based on AIC model weights [46]. Statistical modelling was performed in R 3.1.1,
using the packages lme4 1.1–7 and MuMIn 1.10.5 [47]. Plots of sex ratio against all indepen-
dent variables were visually inspected for non-linear relationships. Values are given and
plotted ± SE. All datasets, full initial and best final models are summarised in Tables 1–5.

Results

Nestling sex
The overall sex ratio in our most comprehensive dataset did not significantly deviate from ran-
dom (50.7% male, Neuhäuser test, z = 0.563, P = 0.645, N = 1780; test described in Neuhäuser
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Table 1. Datasets for analysis of nestlings sex, lifetime sex ratio of females andmales, lifetime repro-
ductive success, reproductive lifespan (longevity) andmortality of nestlings.

(A) Dataset for analyses of nestling sex (n = 1678)

Dependent variable Type of data and coding

Nestlings sex Binomial (0- female, 1-male)

Explanatory variables

Date of laying Day since 1. June (3–57, covariate)

Size hierarchy in the brood Size rank of chick in nest (1–4, covariate)

Brood size Number of siblings in brood (1–4, covariate)

Territory quality Proportion of years the territory was occupied after its establishment
between 1989–2012 (0.04–1, covariate)

Minimum age of mother Years (2–18, covariate)

Minimum age of father Years (2–18, covariate)

Plumage morph of nestling Dark, intermediate or light (factor)

Plumage morph of mother Dark, intermediate or light (factor)

Plumage morph of father Dark, intermediate or light (factor)

Vole score High, intermediate, low (factor)

Year Year of hatching, 2002–2012 (factor)

(B) Dataset for analyses of lifetime sex ratio of females (n = 109)

Dependent variable Type of data and coding

Lifetime sex ratio Ratio of males produced by the individual (0–1, covariate)

Explanatory variables

Territory quality Proportion of years the territory was occupied after its establishment
between 1989–2012 (0.04–1)

Lifetime reproductive success
(LRS)

Total number of fledglings produced by the individual over its entire
lifetime

Longevity Minimum age of the individual when registered as dead (2–18)

Plumage morph Dark, intermediate or light

Plumage morph of male
partner

Dark, intermediate or light

Cohort Year in which the individual first bred

(C) Dataset for analyses of lifetime sex ratio of males (n = 94)

Dependent variable Type of data and coding

Lifetime sex ratio Ratio of males produced by the individual (0–1, covariate)

Explanatory variables

Territory quality Proportion of years the territory was occupied after its establishment
between 1989–2012 (0.04–1)

Longevity Minimum age of the individual when registered as dead (2–18)

Plumage morph Dark, intermediate or light

Cohort Year in which the individual first bred

(D) Dataset for analyses of lifetime reproductive success and length of reproductive career (i.e.
minimum age of individuals not found the population > 2 years), n = 205, 109 females, 94 males

Dependent variables Type of data and coding

Lifetime reproductive success Total number of fledglings produced by the individual over its entire
lifetime

Longevity Minimum age of the individual when registered as dead (2–18)

Explanatory variables

Sex of adult Binomial (0- female, 1-male)

(E) Dataset for analyses of nestling mortality (n = 1780)

Dependent variables Type of data and coding

Nestling survival Nestling does not fledge (0) or fledges (1)

(Continued)
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2004 [48]. The best model explaining nestling sex in the full dataset contained territory quality
(Table 2). More female nestlings hatched in territories of better quality (Fig 1). Additionally,
the interaction of annual vole score and plumage morph of the mother was a significant predic-
tor of nestling sex ratio (χ2 = 9.552, df = 4, P = 0.049). In low vole years, both light and dark
mothers produced more male nestlings, while intermediate mothers produced more female off-
spring (Fig 1), and there was no difference in nestling sex ratio in years of intermediate and
high vole abundance. This interaction of maternal morph and vole score, however, was not
included in the best model explaining nestling sex (ΔAIC = 1.6 between best model and model
including vole score × morph of mother).

Table 1. (Continued)

Explanatory variables

Sex of nestling Binomial (0- female, 1-male)

Voles score of year High, intermediate, low

Territory quality Proportion of years the territory was occupied after its establishment
between 1989–2012 (0.04–1, covariate)

doi:10.1371/journal.pone.0138295.t001

Table 2. Initial (A) and best (B) models of nestlings sex in the dataset including all sampled common buzzard nestlings (n = 1678). ANOVA between
initial and best model of nestling sex χ2 = 21.548, df = 21, P = 0.426, ΔAIC = 19.6.

(A)

Explanatory variable Estimate SE z-value P-value

Intercept 1.04577 0.69841 1.497 0.1343

Territory quality -0.88137 0.28307 -3.114 0.00185

Date of laying 0.11236 0.07708 1.458 0.1449

Size hierarchy in the brood 0.04787 0.0717 0.668 0.50438

Brood size -0.00518 0.07615 -0.068 0.94576

Minimum age of mother -0.07824 0.20851 -0.375 0.70748

Minimum age of father 0.19467 0.20076 0.97 0.33224

Plumage morph of nestling dark-intermediate -0.12667 0.17045 -0.743 0.45739

dark-light -0.20157 0.20716 -0.973 0.33054

Plumage morph of motherdark-intermediate -0.75395 0.38953 -1.936 0.05293

dark-light 0.09288 0.43348 0.214 0.83034

Plumage morph of father dark-intermediate -0.16455 0.47489 -0.346 0.72897

dark-light -0.56501 0.50617 -1.116 0.26432

Vole score low-intermediate -1.00993 0.77827 -1.298 0.19441

low-high -0.70453 0.65285 -1.079 0.28052

Morph of father*Vole score intermediate:low 0.4117 0.66298 0.621 0.53461

light:low 0.6653 0.69704 0.954 0.33985

interm:intermediate -0.01611 0.54168 -0.03 0.97628

light:intermediate 0.42169 0.57378 0.735 0.46238

Morph of mother*Vole score intermediate:low 0.92167 0.512 1.8 0.07184

light:low 0.10733 0.56187 0.191 0.84851

interm:intermediate 1.0122 0.4594 2.203 0.02757

light:intermediate 0.32522 0.49906 0.652 0.51461

(B)

Explanatory variable Estimate SE z-value P-value

Intercept 0.5465 0.2050 2.666 0.00768

Territory quality -0.7053 0.2678 -2.634 0.00845

doi:10.1371/journal.pone.0138295.t002
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Lifetime sex ratio
We found no significant predictors of female lifetime sex ratio (LRS: χ2 = 0.652, df = 1; longevity:
χ2< 0.001, df = 1, female morph: χ2 = 2.727, df = 2, mean morph of male partners: χ2 = 2.627,
df = 1, all P> 0.1, N = 109; Fig 2, Table 3). Lifetime sex ratio of fathers was predicted by their
own melanin morph and territory quality, but not by their LRS or longevity (Table 4). Over their
lifetimes, light fathers fledged significantly higher proportion of daughters than dark and inter-
mediate fathers (Fig 2). Males from pairs in better territories also sired more daughters. However,
none of these effects remained significant when reproductive careers consisting of single broods
were excluded. With increasing LRS, lifetime sex ratio approached equity (absolute difference
between lifetime sex ratio and 0.5, Pearson r = -0.451, df = 94, P< 0.001).

LRS, longevity and sex-specific chick mortality
There were no differences in the distributions of LRS or longevity between males and females
with completely known life histories and sexed offspring (Poisson GLMs with log link, differ-
ence between sexes: LRS χ2 = 0.017, df = 1, P = 0.895, N = 205; longevity χ2 = 0.080, df = 1,
P = 0.777, N = 205; Fig 3, Tables 5 and 6).

Table 3. Initial (A) and best (B) models of lifetime sex ratio of female common buzzards with completely known life histories (n = 109). ANOVA
between initial and best model of female lifetime sex ratio χ2 = 8.503, df = 6, P = 0.203, ΔAIC = 3.5.

(A)

Explanatory variable Estimate SE t-value P-value

Intercept 0.803218 0.231904 3.464 0.000786

Territory quality -0.06065 0.148115 -0.409 0.683091

LRS -0.00949 0.016222 -0.585 0.55966

Individual longevity -0.00731 0.025165 -0.29 0.772189

Plumage morph of female dark-intermediate 0.106185 0.099023 1.072 0.286233

dark-light 0.007444 0.110822 0.067 0.946584

Mean plumage morph of male partners -0.06851 0.057839 -1.184 0.239094

(B)

Explanatory variable Estimate SE t-value P-value

Intercept 0.54151 0.05335 10.15 <0.001

doi:10.1371/journal.pone.0138295.t003

Table 4. Initial (A) and best (B) models of lifetime sex ratio of male common buzzards with completely known life histories (n = 94). ANOVA between
initial and best model of female lifetime sex ratio χ2 = 0.943, df = 2, P = 0.624, ΔAIC = 3.1.

(A)

Explanatory variable Estimate SE t-value P-value

Intercept 0.872276 0.15068 5.789

Territory quality -0.437929 0.164109 -2.669 0.011

LRS 0.004587 0.012739 0.36 0.719

Individual longevity 0.022321 0.033785 0.661 0.511

Plumage morph of male dark-intermediate -0.101125 0.121425 -0.833 0.016

dark-light -0.305691 0.130805 -2.337

(B)

Explanatory variable Estimate SE t-value P-value

Intercept 0.89087 0.14824 6.01

Territory quality -0.38509 0.1542 -2.497 0.017

Plumage morph of male dark-intermediate -0.09077 0.1222 -0.743 0.023

dark-light -0.27835 0.13082 -2.128

doi:10.1371/journal.pone.0138295.t004
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Out of 43 nestlings known to have died before fledging, 16 were female and 27 were male.
Nestling mortality was not significantly sex-biased, but tended to be predicted by vole score
and was significantly predicted by the interaction of vole score and nestling sex (binomial

Fig 1. Sex ratio of nestling buzzards hatched (a) in poor, intermediate and good territories based on their proportional occupancy and (b) in years
with low, intermediate and high vole abundance to dark intermediate and light mothers. Binning into three territory quality classes is for visual
purposes only. Statistical analyses were performed with the continuous variable territory quality.

doi:10.1371/journal.pone.0138295.g001

Table 5. Generalized linear models of lifetime reproductive success, LRS (A), reproductive lifespan, longevity (B) and nestlingmortality (C).

(A)

Explanatory variable Estimate SE z-value P-value

Intercept 1.377078 0.048113 28.622 <0.001

Sex -0.009217 0.070135 0.131 0.895

(B)

Explanatory variable Estimate SE z-value P-value

Intercept 0.99902 0.05812 17.188 <0.001

Sex 0.02389 0.0844 0.283 0.777

(C)

Explanatory variable Estimate SE z-value P-value

Intercept 3.2131 0.3855 8.335 <0.001

Sex (male compared to female) 0.3073 0.5954 0.516 0.6058

Vole score (intermediate compared to low) 0.9405 0.698 1.347 0.1778

Vole score (high compared to low) 1.1997 0.5633 2.13 0.0332

Male in intermediate vole year (compared to female in such) 0.7808 1.3028 0.599 0.549

Male in high vole year (compared to female in such) -1.5127 0.7568 -1.999 0.0456

doi:10.1371/journal.pone.0138295.t005
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GLMwith logit link: vole score deviance = 5.263, df = 2, P = 0.072; nestling sex deviance = 2.571,
df = 1, P = 0.109; vole score × sex deviance = 6.666, df = 2, P = 0.036, N = 1780). Years with
intermediate vole score tended to have lower mortality than both high and low vole years. In
high vole years, male nestlings had significantly higher mortality than females. Broods with
known mortality cases were larger before but not after mortality (broods without mortality,
mean size = 2.00 ± 0.03; broods before mortality, mean size = 2.63 ± 0.14, χ2 = 20.295, N = 884,
P< 0.001; broods after mortality, mean size = 2.12 ± 0.14, χ2 = 0.664, P = 0.415, N = 43).
Broods with mortality cases were male-biased both before (mean male fraction before mortal-
ity = 0.662 ± 0.046, N = 43; broods without mortality mean = 0.495 ± 0.0138, N = 841; χ2 =
7.253, P = 0.007) and after mortality (mean male fraction after mortality = 0.714 ± 0.057,
N = 39; χ2 = 11.203, P = 0.001). Nestling mortality was not explained by territory quality or its
interaction with nestling sex.

Discussion
In common buzzards, we predicted a male-biased sex ratio under harsh conditions such as
vole-poor years and in low-quality territories, corresponding to the “local adaptation hypothe-
sis”. At the same time, we predicted more females to be produced earlier in the breeding season,
corresponding to the “early sex hypothesis”. However, in common buzzards we found no sys-
tematic sex-ratio variation in response to survival-related variables such as food abundance
alone or laying date. The overall scarcity of sex ratio correlations might be due to the similarity
of distributions of LRS, length of reproductive career and infant mortality between sexes. The
distribution of these basic fitness components was very similar between buzzard sexes. Such a
pattern could reduce the scope for adaptive sex ratio adjustment.

Fig 2. Lifetime sex ratio (+SE) of (a) mothers and (b) fathers of different melanin morphs with entirely known reproductive output. Sample sizes are
number of individuals of the respective class with completely known lifetime sex ratio.

doi:10.1371/journal.pone.0138295.g002
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The most consistent variable explaining buzzard nestling sex ratio was territory quality. In
accordance with the “local adaptation hypothesis”, more males were produced in poor-quality
territories (Fig 1). Frequently-used territories are associated with higher reproductive success
and can therefore be considered to be better [40]. We are still unaware what features make a
territory preferable for buzzards. However, annual food availability reflected by vole abundance
showed no direct effects on offspring sex ratio. Additionally, we could not find an effect of ter-
ritory quality on nestling mortality. Therefore it needs to be investigated in more detail at
which developmental phase the bias in sex ratio arises.

Surprisingly, despite the absence of strong indicators for the adaptive value of biased sex
ratios, we found a sex ratio pattern in relation to plumage morphs in buzzards. On the one

Fig 3. Histograms of observed length of reproductive career in years and lifetime reproductive success (LRS, total number of fledglings) of adult
female andmale buzzards (# individuals) with completely known LRS and lifetime sex ratio. LRS distributions of males and females were statistically
indistinguishable.

doi:10.1371/journal.pone.0138295.g003

Table 6. Properties of distributions of lifetime reproductive success (LRS, total number of fledglings produced over the individual lifetime) and
length of reproductive career of adult female andmale buzzards with completely sampled offspring.

LRS Length of reproductive career

Female Male Female Male

Range (min-max) 1–18 1–14 1–10 1–9

Mean (SE) 3.96 (0.312) 4 (0.339) 2.72 (0.207) 2.78 (0.207)

SD 3.257 3.325 2.161 2.027

Variance 10.610 11.053 4.688 4.110

Median 3 3 2 2

Skewness (SE) 1.815 (0.231) 1.527 (0.246) 1.369 (0.231) 1.009 (0.249)

Curtosis (SE) 3.733 (0.459) 1.806 (0.488) 1.292 (0.459) 0.182 (0.488)

doi:10.1371/journal.pone.0138295.t006
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hand, under poor food conditions, dark and light females produced more males, while interme-
diately-coloured females produced more females (Fig 1). The sex allocation of extremely-col-
oured females is in line with the “local adaptation hypothesis”. Intermediate females have
higher fitness and may overall be of higher quality than extreme morphs [19]. Thus, intermedi-
ate females might be less resource-restricted and able to allocate offspring sex in a contrasting
way to utilize the higher reproductive value of females in the given cohort despite harsh condi-
tions [49]. A similar interaction between local conditions and melanin colouration has been
found to affect sex allocation in barn owls [31]. Although the interaction of plumage morph
and food abundance explained population-wide nestling sex, its significance should be treated
cautiously since it was not part of the best explanatory models and a conservative interpreta-
tion would be that it does not contribute to explaining nestling sex.

On the other hand, morph explained male lifetime sex ratio, with light males having more
female offspring over their lifetimes. Females often adapt their offspring sex ratio to features of
their partners, even in monogamous species with low extra pair paternity [50]. This effect
might be connected to differences between morphs and sexes in aggressiveness, parasitism and
capability to cope with food limitations (see Introduction; [20, 21, 27, 51]). However, melanin
morph in buzzards is inherited from both parents and it should be further investigated why off-
spring sex ratio would be influenced only by morph of the male partner [19, 27].

Any apparent bias of lifetime sex ratio decreased with higher offspring numbers. Too few
buzzards had sufficiently high offspring numbers to identify sample-size independent extremes
in lifetime sex ratio. Thus, lifetime sex ratio as a measure of allocation flexibility would be better
applicable to organisms with larger litter sizes. So far, we cannot recognize individual con-
straints on sex allocation in buzzards.

While the “costly sex hypothesis” predicts higher female nestling mortality, especially in
years of low food abundance, we found a trend for higher mortality of the smaller, supposedly
less demanding males in vole-rich years. However, in such years, parents might be prone to
overestimate their own provisioning capabilities and female chicks may be better able to out-
compete their male siblings for prey [6, 52]. Higher mortality of males may occur also for com-
petition-independent cryptic reasons. For example, if years with high prey abundance should
coincide with years with high parasite abundance a lower immune-competence of males could
lead to their higher mortality. Competition-independent mortality might explain why males
died more often in male-biased and not in female-biased broods [53]. Our sample of nestling
mortality was small but our result, showing overall balanced infant mortality between sexes,
are supported by findings in goshawks and sparrowhawks, where also no sex-biased nestling
mortality has been found [45, 54].

We did not find any patterns in LRS and longevity supporting the “early sex hypothesis”
and correspondingly, we did not find any sex-ratio bias along hatching date between broods.
Unfortunately, a direct test of this hypothesis by comparing the life histories of individuals of
both sexes born on the same date is currently impossible for highly mobile and long-lived spe-
cies such as buzzards. Nonetheless, if individuals of one sex occasionally have longer breeding
careers and produce more offspring overall, the distributions of LRS and longevity should differ
between the sexes. Longevity of both sexes is similar in our population but a recent study found
adult survival of male buzzards to increase faster than survival of female buzzards [29]. This
pattern may arise because males can profit more from increasing winter food availability under
rapidly changing climate conditions. A difference in adult survival between sexes may be a sig-
nificant cause for sex allocation in the future.

In summary, we did not find clear differences in LRS, length of reproductive career or mor-
tality that may provide a basis for sex allocation in common buzzards. Only after these analyses
we can comprehend why several expected life history traits and environmental conditions do
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not explain offspring sex ratio. However, offspring sex ratio was explained by environmental
quality and its interaction with parental phenotype. This indicates potential phenotype-specific
adaptation of sex allocation to local conditions and emphasizes the need for further examina-
tion of sex allocation in colour-polymorphic species.

Supporting Information
S1 Datasets. Buzzard nestling sex and lifetime sex ratio. Datasets on buzzard nestling sex,
nestling mortality, lifetime sex ratio and reproductive career of adult buzzards used by Cha-
karov et al. “Territory quality and plumage morph predict offspring sex ratio variation in a rap-
tor”.
(TXT)
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