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Abstract: Environmental Protection in the Arctic – support of German activities in the Arctic 
Council in terms of a pilot study on monitoring plastic litter on arctic coastlines applying remote 
sensing techniques  

A consistent and Arctic-wide quantification of beach litter is an essential step for the 
development of a Regional Action Plan (RAP) as intended by the Protection of the Arctic 
Environment working group from the arctic council (PAME) for 2021. The quantification of 
beach litter not only gives information on the actual state of pollution, but also allows for setting 
a baseline, which can be used to validate the possible success of measures implemented in an 
action plan. 

To achieve such a baseline, a uniform methodology is necessary which allows for a cost- and 
time-efficient monitoring of the Arctic coastlines. Traditional beach litter monitoring should be 
supported and spatially extended by applying remote sensing techniques, such as satellite 
imagery or drone surveys. The derivation of a suitable methodology is the major aim of this 
study. The new methods were tested on several hot spots of beach litter. For this purpose, hot 
spots were identified before, by analysing existing beach litter data, as well as information on 
sources and influencing factors (e.g. population density, sewage treatment, etc.). Statistical and 
modelling approaches were applied, suggesting potential hot spots of beach litter accumulation. 

To select a suitable methodology, a literature study was performed comparing the potential of 
different remote sensing techniques regarding spatial and spectral resolution, time and cost 
efficiency and their potential for a (semi-) automatic classification. Considering the restrictions 
of spatial resolution for all remote sensing techniques, this study focuses on macro litter 
(>2.5 cm). A combination of several methodologies was recommended and performed on beach 
sections on Greenland and Svalbard, i.e. satellite imagery with high spatial resolution data from 
drone surveys and results from conventional beach litter surveys applying the OSPAR method. 

The drone surveys were evaluated by a manual screening of the drone imagery and the 
application of machine learning approaches. During the manual screening of the drone imagery, 
up to 17.5% of the plastic items, identified during the OSPAR (Convention for the Protection of 
the North Sea and the North-East Atlantic) monitoring, could be detected. The low recovery rate 
is the result of the litter size distribution with most items <10 cm, the heterogenic beach 
environment, and the ground sample distance (GSD) (1.4 cm and 3.4 cm for the RGB (Red-Green-
Blue) and the visible infrared (VIR) sensor, respectively). A (semi-) automatic classification of 
beach litter was applied testing machine learning approaches like Random Forest, Support 
Vector Machine, and Neural Network. The highest overall accuracy (OA) was reached applying 
Random Forest on VIR imagery with an OA of 90.6%, showing the potential of VIR imagery. 
Misclassifications of plastic objects applying machine learning algorithms occurred mainly with 
rocks and wood. As the occurrence of plastic objects was much smaller compared to rocks and 
wood, wrong assignments had a great impact on the classification maps and plastic was strongly 
overestimated. To meet up with the complex environmental conditions and the litter size 
distribution in the Arctic, a sub-centimetre GSD is recommended for future studies in the Arctic. 
For large areas, the drone-based beach litter monitoring was up to 22-times faster compared to 
the OSPAR monitoring. For small areas, an OSPAR monitoring could be more time efficient. 
Anyhow, drone surveys can also be beneficial for small areas, as the beaches in the Arctic are 
often remote and the time at the beaches is often limited. The results of the WorldView 3 (WV3) 
imagery showed that beach litter detection with satellite imagery is still limited by its spatial 
resolution and only large accumulations of litter seem to be detectable. The litter size and the 
spatial distribution of litter on the monitored Arctic beaches were too low to be identified on the 
WV3 imagery. A higher spatial resolution or a larger spectral coverage would be required to also 
detect lower litter accumulations on beaches from satellites. In future studies, sub-pixel 
detection approaches for beach litter detection should be tested for survey areas with very high 
litter abundances to determine the minimum coverage of plastics that is required for a 
successful detection. The results of such an evaluation can further be used to determine the 
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resolution of satellite imagery needed to detect litter accumulations as found on Greenland and 
Svalbard.  
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Kurzbeschreibung: Umweltschutz in der Arktis – Unterstützung der deutschen Aktivitäten im 
Arktischen Rat durch eine Pilotstudie zum Monitoring von Kunststoffmüll an arktischen Küsten 
mittels fernerkundlicher oder luftgestützter Methoden 
Eine arktisweit einheitliche Erfassung von Strandmüll ist die grundlegende Voraussetzung für 
die Entwicklung eines regionalen Aktionsplans (RAP) wie von der Protection of the Arctic 
Marine Environment Arbeitsgruppe des Arktischen Rats (PAME) für 2021 angestrebt. Die 
Erfassung von Strandmüll gibt dabei sowohl Informationen über den aktuellen 
Verschmutzungszustand als auch eine Grundlage für die Bewertung des Erfolgs möglicher 
Aktionspläne.  

Um dies zu erreichen, ist eine einheitliche Methodik erforderlich, die eine kosten- und 
zeiteffiziente Erfassung von arktischen Stränden ermöglicht. Die traditionelle Erfassung von 
Strandmüll wurde in diesem Projekt durch fernerkundliche Methoden wie Satellitenbilder oder 
Drohnenerfassungen unterstützt und erweitert. Die Entwicklung einer geeigneten Methodik war 
das Hauptziel dieser Studie, und die Methodik wurde an ausgewählten Hotspots von Strandmüll 
auf Grönland und Spitzbergen evaluiert. Zu diesem Zweck wurden zuvor potenzielle Hotspots 
identifiziert, indem Daten von bereits existierenden Standmüllkartierungen sowie 
Informationen zu potenziellen Quellen und weiterer geografischer Faktoren (z. B. 
Bevölkerungsdichte, Abwasserbehandlung usw.) ausgewertet wurden. Zur Auswertung wurden 
ein statistischer und ein Modell-basierter Ansatz gewählt. 

Für die Entwicklung einer geeigneten Methodik wurde eine Literaturstudie durchgeführt, in der 
das Potenzial verschiedener Fernerkundungsmethoden hinsichtlich räumlicher und spektraler 
Auflösung, Zeit- und Kosteneffizienz und der Anwendbarkeit einer (halb-) automatischen 
Klassifizierung verglichen wurde. In Anbetracht der Einschränkungen der räumlichen Auflösung 
aller Fernerkundungstechniken konzentriert sich diese Studie auf Makromüll (>2,5 cm). Eine 
Kombination von Satellitenbildern mit Drohnenerfassungen und konventionellen 
Strandmüllkartierungen wird empfohlen. 

Für die Drohnenerfassung wurde eine manuelle Sichtung der Drohnenbilder und eine 
Anwendung Maschinellen Lernens getestet. Bei der manuellen Sichtung konnten bis zu 17,5% 
der Plastikobjekte im Vergleich zur OSPAR (Vertrag zum Schutz der Nordsee und des 
Nordostatlantiks) Erfassung gefunden werden. Die niedrige Erfassungsrate resultierte aus der 
Größenverteilung der Plastikobjekte mit der Mehrzahl der Objekte <10 cm, der heterogenen 
Strandumgebung und der Bodenauflösung (ground sample distance: GSD) von 1,4 cm und 
3,4 cm für den RGB (Rot-Grün-Blau) - beziehungsweise den VIR (sichtbar – Infrarot) - Sensor. 
Eine (halb-) automatische Auswertung der Drohnenbilder wurde anhand verschiedener 
Anwendungen Maschinellen Lernens (Random Forest, Support Vector Machine, Neuronale 
Netzwerke) getestet. Die höchste Gesamtgenauigkeit (overall accuracy: OA) wurde unter 
Anwendung von Random Forest für VIR-Bilder erreicht mit einer OA von 90,6%. Die häufigste 
Fehlklassifikation von Plastikobjekten fand mit Steinen und Holz statt. Auf Grund des deutlich 
geringeren Müllvorkommens im Vergleich zum Vorkommen von Steinen und Holz, führte schon 
ein geringer Prozentsatz an falsch bestimmten Steinen und Holz zu einer erheblichen 
Überschätzung des Plastikmülls. Um den komplexen Umweltbedingungen und der 
Größenverteilung der Plastikobjekte in der Arktis gerecht zu werden, wird für zukünftige 
Studien eine GSD im Subzentimeter-Bereich empfohlen. Für große Flächen war das 
drohnenbasierte Strandmüll-Monitoring im Vergleich zum OSPAR-Monitoring bis zu 22-mal 
schneller, wohingegen für kleinere Flächen das OSPAR-Monitoring effizienter war. Trotzdem 
können Drohnenerfassungen auch für kleine Gebiete von Vorteil sein, da die Strände in der 
Arktis oft abgelegen sind und die Zeit an den Stränden begrenzt sein kann. Die Ergebnisse der 
WorldView 3 (WV3) -Bilder zeigen, dass die Erkennung von Strandmüll mit Satellitenbildern 
immer noch durch die räumliche Auflösung begrenzt ist und nur große Müllansammlungen 
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erkennbar sind. Eine höhere räumliche Auflösung oder eine größere spektrale Abdeckung wäre 
erforderlich, um auch geringere Müllansammlungen an Stränden von Satelliten aus zu erkennen. 
In zukünftigen Studien sollten Anwendung der Sub-Pixel Klassifikation in 
Untersuchungsgebieten mit sehr hohem Müllaufkommen getestet werden, um die 
Mindestpixelabdeckung durch Plastikobjekte zu bestimmen, die für eine erfolgreiche Erkennung 
erforderlich ist. Die Ergebnisse einer solchen Auswertung können verwendet werden, um die 
Mindestauflösung von Satellitenbildern zu bestimmen, um Müllansammlungen, wie sie auf 
Grönland und Spitzbergen vorgefunden wurden, erkennen zu können.  
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EnMap Environmental Mapping and Analysis Program 

FDI Floating Debris Index 

GNSS Global Navigation Satellite System 

GSD Ground sample distance 

HELCOM Baltic Marine Environment Protection Commission (Helsinki Commission, 
HELCOM 

HoG Histogram of orientated Gradients  

HR High resolution 

ICG ML Intersessional Correspondence Group Marine Litter (OSPAR Working Group) 

IR Infrared 

ISO Film speed 

ITRES ITRES Research Limited 

KNN K-nearest neighbors 

LDPE Low Density Polyethylen 

LR Low resolution 

ML Maximum Likelihood classifier 

MSFD Marine Strategy Framework Directive 

MTOW Maximum Takeoff Weight 

NetCDF Network Common Data Form 

NDVI Normalized Difference Vegetation Index 

NIR Near Infrared 

NP Norsk Polar Institute 

OA Orbicon Arctic A/S 

OSPAR Convention for the Protection of the Marine Environment of the North-East 
Atlantic (named after the predecessors Oslo Convention and Paris 
Convention) 

PA Producer’s Accuracy 

PAME Protection of the Arctic Marine Environment (Working Group of the Arctic 
Council) 
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PERMANCOVA Permutational analysis of covariance 

PET Polyethylene terephthalate 

R Statistical software 

RAP Regional Action Plan 

RF Random Forest 

RGB Red-Green-Blue 

ROMS Regional Ocean Modelling System 

SDMTools R package: Species Distribution Modelling Tools  

SWIR Shortwave Infrared 

SVM Support Vector Machine 

UA User’s Accuracy 

UAV  Unmanned Aerial Vehicle/ Drone 

UBA German Environmental Agency (Umweltbundesamt) 

VIR Visible Infrared 

VIS Visible spectrum 

VNIR Visible and near Infrared 

WSP WSP Global 

WV3 WorldView 3 

WWF World Wide Fund For Nature 
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Summary 

This study aims to develop a large-scale application for an Arctic-wide consistent and 
comparable data acquisition of beach litter. Therefore, traditional applications of beach litter 
monitoring were combined and extended by remote sensing techniques. The developed 
applications were tested on selected beaches on Svalbard and Greenland and validated by 
comparing it to a traditional beach litter monitoring approach on the same test sites. Methods of 
traditional beach litter monitoring were evaluated to select the most suitable approach for this 
study. The test sites on Svalbard and Greenland were chosen after the identification of potential 
hotspots of beach litter accumulation applying statistical and modelling approaches. Potential 
test sites were further evaluated by their remoteness and by the presence of regional logistics 
facilities.  

In work package 1, AquaEcology GmbH & Co. KG (AE) performed a literature study on existing 
methods of beach litter monitoring. Distinct monitoring methods, such as those by Alkalay et al. 
(2007), Bravo et al. (2009), Cheshire et al. (2009), Opfer et al. (2012) and OSPAR (2010), were 
compared. The OSPAR method is applied by the European countries and Greenland, while the 
protocols of Opfer et al. (2012) and Cheshire et al. (2009) are applied in the United States and 
Canada, respectively. For this study, the OSPAR method (2010) was applied, as it was found to 
be the most detailed one among the methods described above. During OSPAR surveys, standard 
100 m sections of beach along the coastline are monitored, recording the abundance of 
macroscopic beach litter. The recorded litter is then collected and removed from the survey 
sites. The mean total abundance of beach litter on OSPAR beaches on Greenland and Svalbard 
was analysed for the years 2016 to 2019. On Greenland values ranged from one item at the 
eastern coast to over 800 items at the western coast. On Svalbard, the mean total abundances of 
beach litter approximated to 200 items. An analysis of the spatial distribution of beach litter 
shows the occurrence of high amounts of beach litter on sections of beaches highly exposed to 
wind and currents indicating that most beach litter is sea-based. Sea-based sources contain 
mostly shipping and fishing. Several studies confirm shipping and especially fishing as the 
dominating sources of marine litter in the Arctic (Bergmann et al., 2017; Buhl-Mortensen and 
Buhl-Mortensen, 2017; Tekmann et al., 2017). 

BioConsult SH GmbH & Co. KG (BCSH) conducted a literature study on existing remote sensing 
techniques for the detection of plastic litter on Arctic beaches in order to develop an application 
for an Arctic-wide consistent and comparable data acquisition. The literature study focused on 
three remote sensing platforms: Satellite, airborne and drone (UAV), which were evaluated in 
terms of spectral and spatial resolution, area coverage, acquisition limitations and costs. Satellite 
platforms showed high potential for plastic beach litter detection on Arctic beaches permitting 
the acquisition of large-scale areas with a high spectral coverage. Due to the remoteness of the 
Arctic and the resulting time and cost intensive logistics of field works, satellite platforms are 
predestinated for an Arctic-wide monitoring. Several studies (Topouzelisa et al. 2019, Biermann 
et al. 2020, Acuña-Ruz et al. 2018 and Maximenko et al. 2019) have shown the potential of 
satellite systems for the detection of spectral characteristics of plastics on pixel level. Even 
though the main limitation remains the relatively coarse spatial resolution of >1 m for 
multispectral imagery resulting in a potential detectability of objects >1 m². Sub-pixel 
classification could further increase the object detectability, but this was only tested over sea so 
far. A further challenge of satellite-based beach litter detection is the high cloud coverage in the 
Arctic which requires a broad acquisition timeframe and high revisit time. Airborne-based 
digital surveys for litter detection were conducted in various studies, showing its potential for a 
visual census of plastic litter as well as for (semi-) automatic classification approaches (Garaba 
et al. 2018, Garaba et al. 2018b, Moy et al. 2018, Pichel et al. 2012 and Garcia-Garin et al. 2019). 
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The visual analysis permitted an identification of objects with a size of ten times the spatial 
resolution. For a (semi-) automatic classification hyperspectral sensors were applied. Garaba et 
al. (2018b) described a potential detection of objects at sub-pixel scale of 5% of a pixel over sea, 
resulting in an object size of around 0.025 x 0.06 m. Airborne-based systems show great 
potential regarding spatial and spectral resolution but are limited due to their relatively high 
cost, especially for an Arctic-wide acquisition. Costs include instrument-running costs, aircraft/ 
fuel overheads, mobilization and demobilization and personnel and living expenses (Coulter et 
al. 2007). A rough estimation of area coverage is based on aerial survey experience of BCSH and 
resulted in an approximate coverage of around 800 km of coastline per day at a flight altitude of 
550 m but can vary significantly depending on coastal characteristics. UAVs were successfully 
applied in various studies of beach litter monitoring for a visual analysis and for (semi-) 
automatic detection approaches (Martin et al. 2018, Bao et al. 2018). UAVs permit the highest 
spatial resolution of the three platforms with sub-centimetre acquisition in RGB and 3.4 cm for 
multispectral sensors. The application of hyperspectral sensors is possible but still very costive. 
Several studies showed the potential of (semi-) automatic classification over sandy beaches 
(Martine et al. 2018, Bao et al. 2018) which has still to be confirmed on different beach types. 
The relatively low costs and the fast acquisition time make UAV surveys particularly interesting 
on a locale scale and as a support to traditional beach litter monitoring. The main limitation of 
UAV surveys for an Arctic-wide monitoring of beach litter are a large-scale application and the 
accessibility of remote areas as well as the climatic limitations (rain or strong winds >30 km/h). 
In addition to the literature review of the three remote sensing platforms, the applicability of 
(semi-) automatic classification methods was investigated. For a large-scale application in the 
Arctic, satellite data are of high interest and thus provide an appropriate classification on pixel 
level using the spectral characteristics of plastic. Garaba et al. (2020) presented a continuous 
spectrum of plastic litter identifying wavelength ranges that are characteristic for the presence 
of plastics (around 931 nm, 1215 nm, 1417 nm, 1732 nm). Sensors covering these wavelength 
ranges are particularly well-suited for (semi-) automatic detection of plastic litter. Comparing 
the three platforms with their advantages and limitations, BCSH suggests a combination of at 
least two platforms to profit from synergistic effects. For this study, BCSH recommends the 
application of WorldView3 (WV3) satellite imagery and UAV imagery from the multispectral 
MicaSense Altum sensor. Combining satellite imagery with large aerial coverage but relatively 
low spatial resolution, with high spatial resolution data from UAV surveys is very promising.  

In work package 2, AE and BCSH summarized and acquired the data, necessary for the 
identification of accumulations of beach litter on Greenland and Svalbard. Orbicon Arctic A/S 
(OA) gathered and provided data regarding settlements, tourism, harbours, landfills, and mining 
activities on Greenland. Data availability significantly differed between Svalbard and Greenland. 
Therefore, data evaluations were different, as well. While hydrodynamic and Lagrangian 
transport models were available for the waters around Svalbard only, information on shipping, 
fishing, and tourism could be acquired for Greenland only. The required data included 
geo-referenced data on settlements, harbours, currents, and wind as well as information on 
landfills and incineration. AE created geo-referenced shape files of meteorological stations, 
harbours, and settlements and aggregated ASTD data on shipping and fishing activities to total 
abundances in the waters of Greenland. Afterwards, AE carried out a statistical analysis to 
identify drivers of beach litter abundances on Greenland. A permutational analysis of covariance 
(PERMANCOVA) was calculated with mean abundances of fishing vessels as factor, and numbers 
of inhabitants, distance to next settlement, distance to next harbour, and overnight stays as 
covariates. Mean total abundances of beach litter on Greenland, taken from the OSPAR beach 
litter database, were used as dependent variable. Normality (Kolmogorov-Smirnov test) and 
homogeneity of variance (Levene test) were given, but autocorrelation could not be excluded 
definitely. Therefore, the model is assumed to be not or barely biased. The model fit was good 
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with a measure of determination of 0.83. Fishing and overnight stays could be identified as 
significant factor and covariate, respectively, which agrees with previous studies on beach litter 
in the Arctic. Particularly, sea-based sources are often highlighted as dominant input parameter 
(Bergmann et al. 2017, Kirkfeldt 2016, Tekmann et al. 2017). Further evidence for sea-based 
sources are wind and data on currents. Abundances of beach litter at the west coast of Greenland 
are highest where strong westerly or southwesterly winds are dominating. In contrast, beaches 
with less westerly wind reflect lower abundances. The proximity to larger cities is an additional 
factor for beach litter accumulation. Evaluating all data, hotspots of beach litter accumulation 
were expected to be found close to Nuuk and Sisimiut, making them potential beaches to be 
surveyed in this project. At Svalbard, easterly winds are predominating, indicating lower 
abundances at the western coast of Svalbard. Highest abundances were found on beach sections 
exposed to wind and currents in the north of Svalbard (Bergmann et al., 2017).  

In addition to the statistical approach described above, BCSH applied a modelling approach to 
predict locations around Svalbard with higher probabilities of beaching of macro-plastics. The 
model approach was only applied on Svalbard, as no high-resolution dataset of sea current was 
available for Greenland. Therefore, two sets of data on sea currents with different resolutions 
were applied and the outputs from the models were assessed. Monthly fishing data were used to 
create input data for the model calculating monthly densities, based on which plastic particles 
were deployed randomly at sea every 100 km of route. Each monthly dataset was loaded in the 
current model. Furthermore, two current datasets were used as an input. From the Marine 
Copernicus website (https://marine.copernicus.eu), a dataset with low spatial resolution but 
large spatial coverage was downloaded and used for simulation of trajectories of plastic 
particles released according to the monthly fishing intensity. Besides, it was used to feed 
particles to the higher resolution model. The dataset had a spatial resolution of 0.025°, a spatial 
extension from -10°W to 60°E and from 55°N to 90°N and a temporal coverage over two years, 
from August 2008 to August 2010. The second dataset had higher spatial resolution but less 
spatial coverage and is available on the Norwegian Meteorological Service website 
(https:\\api.npolar.no). The dataset is available for the years 2005 to 2010 at 800 m resolution 
but is not covering the full fishing area around Svalbard. Therefore, plastic particles were fed by 
the lower resolution model. The temporal range was set between August 2009 and August 2010. 
Wind and wave stoke were not available for the considered area and time frame and therefore 
not included in this study. The model was performed with OpenDrift v1.0, an open-source 
Python based framework for Lagrangian particle modelling that is commonly used to predict 
pathways of floating objects in the ocean (Dagestad et al. 2018). As wind and wave stoke were 
not available, a 10% uncertainty factor was included in the current. Litter particles of both 
models that stranded at the end of the study period were used for further statistical analysis. 
Both models showed similar stranding patterns with highest stranding probability at the 
Southern- and Western coast. A linear regression model confirmed a significant relation with a 
measure of determination (R²) of 0.758 but also showed higher variations among predicted 
standings in the southern coast. A spatial analysis on significant difference confirmed the results 
from the linear regression. Both models indicated potential litter accumulation on the West 
coast of Svalbard, a finding which contrasts with the above-mentioned assumption of low 
abundances due to easterly winds. One explanation might be that wind and wave data were not 
incorporated in this study. Abundance data gathered by this studies’ fieldwork can improve the 
model output and should be included in future approaches. For future approaches, BCSH 
suggests the incorporation of the Leeway configuration which is a more accurate model 
configuration for big size plastics compared to PlasticDrift. For the application of the Leeway 
configuration, wind and wave data are required. BCSH recommends the application of the 

https://api.npolar.no/
https://marine.copernicus.eu
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Copernicus model, which shows similar results and is not limited to the years 2005 to 2010 as is 
the API model. Additional input parameter such as the type of coast (beach or cliff), the slope of 
the beach or wave angle incidence could further improve the model. 

The expedition to Svalbard lasted from June 25, 2021 to July 17, 2021. A total of two 50 m 
sections of beach were completely surveyed applying the OSPAR method. Coordinates were 
determined by means of a high-resolution GPS. The coordinates of single pieces of litter could 
not be measured because of lacking access to internet and radio. During the stay on Greenland, 
beach litter surveys were performed near Nuuk and Sisimiut with up to four replicate sections of 
beach. Travelling to the selected beaches was done by boat with a boat guide. Conventional 
surveys were carried out applying the OSPAR method (OSPAR, 2010), where the most recent 
categorization of 2021 was used. Categorization was amended by beach litter types, which are 
characteristic of the western coast of Greenland. These new litter types were derived from the 
Strietmann et al. (2021) and are based on the splitting of OSPAR beach litter types, as was 
similarly done by the Joint Category list of the MSFD. Power analyses on one-sided one-sample 
Wilcoxon rank sum tests were calculated to estimate how long beach sections have to be for a 
significant detection of beach litter reduction by as much as 10%, 20%, 30%, 40% and 50%. For 
this purpose, a significance level of 0.05 was used.  

On Svalbard, mean total abundance was as low as 28.5 pieces of litter per 50 m beach. Beach 
litter consisted of 57.9% plastic, 40.4% wood and 1.7% rubber. The high percentage of plastics 
agrees well with the results of previous beach litter studies on Svalbard (Bergmann et al., 2017). 
Among the top-14 litter categories, six are definitely attributable to fishing and shipping. 
Thereby, the importance of sea-based sources is highlighted, which is in line with the results of 
previous studies (Bergmann et al., 2017; Weslawski and Kotwicki, 2018).  

Near Nuuk and Sisimiut, mean total abundances of beach litter amounted to 116.4±111.9 pieces 
and 87,3±33,5 pieces on a 50 m section of beach, respectively. This was in the same order of 
magnitude as Strietmann et al. (2021) found on the western coast of Greenland. Material 
composition was dominated by plastics and processed wood, which again is in line with the 
results of Strietmann et al. (2021). Beach litter types, which can definitely be assigned to sea-
based sources, were the most common among the top-ten litter types. This finding is partly 
contradictory to the results of Strietmann et al. (2021), who found that domestic waste was 
predominant. These differences are likely due to the fact that the latter authors partly surveyed 
beaches in closer vicinity to settlements than in the study at hand. However, the precise 
distances to settlements are not given in the study of Strietmann et al. (2021). Power analyses 
gave statistical powers <50% and >80% for beaches near Nuuk and Sisimiut, respectively, for 
beach litter reductions of 50%. At lower reduction rates, statistical power was even lower and 
thus not sufficient. Therefore, surveyed beach sections should have a minimum length of 200 m, 
because near Sisimiut, replicate data of four beach sections of 50 m length were used for power 
analyses. In turn from a logistic point of view, this supports the application of UAVs for beach 
litter surveys on Greenland.  

To evaluate the potential for remote sensing techniques in the Arctic, drone and satellite 
imagery were acquired.  

The drone images were recorded with a WingtraOne drone and two sensors, the Sony QX1 
(RGB) and the Micansense Altum (VIR) with a ground sample distance (GSD) of 1.4 cm and 
3.4 cm respectively. The drone surveys were conducted before performing the OSPAR survey, to 
make sure that litter items were not accidently moved or buried. A total of eight study sites were 
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monitored, two on Svalbard and six on Greenland. The area coverage varied between 1.31 ha 
and 33.85 ha with a minimum of two flights per area, one for each sensor. The required flight 
time per study site was between 06:56 and 49:26 minutes in which 108 to 1877 images were 
recorded.  

The single images were georeferenced with a post-processed kinematics (PPK) approach and 
used as an input in the photogrammetry software Pix4D mapper version 4.6.4 to produce 
elevation models, orthophotos and index maps. The orthophotos of the RGB imagery were then 
screened manually for litter objects within a GIS environment (QGIS version 3.16.6.) with a scale 
of 1:20. Between 0 and 63 pieces could be detected which is compared to the OSPAR data at 
maximum 24% and a mean of 14.8% of all found litter objects. Previous studies described a 
detection of litter objects by manual screening with a detectability between 18% (Merlino et al., 
2020) to almost 100% of litter objects (Andriolo et al., 2020; Escobar Sánchez et al., 2021; 
Gonçalves et al., 2020b). Three factors were identified to explain the variation in detectability 
between previous studies, which could have led to the relative low recovery rates in this study: 
The litter size-distribution, the beach environment, and the GSD of the drone footage. The 
smaller the objects are, the more difficult they are to spot. Therefore, depending on the litter size 
distribution on the study area, the detectability of objects via manual screening can vary 
significantly (Martin et al., 2018; Merlino et al. 2020; Lo et al., 2020). On the surveyed beaches in 
the Arctic, over 70% of the plastic objects detected on drone footage were larger than >10 cm, 
reflecting the difficulties of detecting smaller objects. Furthermore, the substrate of the beach 
(sand or gravel) and its heterogeneity (e.g., occurrence of vegetation, wood, or rocks) influence 
the manual screening. The monitored beaches in the Arctic had a heterogenic beach background 
with coloured pebbles, vegetation and driftwood which could be mistaken for litter objects and 
made the manual screening difficult. Merlino et al. (2020) described similar difficulties with 
small objects and complex beach backgrounds even having a GSD of 0.18 cm. The third 
parameter, the GSD, is the only one of the above-mentioned parameters that can be directly 
defined by the operator as it depends on the chosen sensor and the flight altitude. A lower GSD 
decreases the minimum size of an object sufficient to be identified, but is limited by the applied 
sensor and may lead to a decrease in area coverage. The detected objects of the manual 
screening were used to create density maps for each region which could be used as reference for 
WV3 satellite imagery later. Furthermore, they were used as reference data to test several 
approaches of (semi-) automatic classification (Random Forest, Support Vector Machine, and 
Neural Network). The best statistical results for (semi-) automatic classifications were reached 
applying Random Forest on VIR imagery with an overall accuracy of 90.6% and a F-score of 
77%. The corresponding User’s Accuracy was 81.5%. Misclassifications of plastics occurred 
mainly with the classes rocks and wood. As the plastic object occurrence was much smaller 
compared to those classes, wrong assignments had a great impact on the classification maps 
where plastic was strongly overestimated. The difficulty to spectrally differentiate between 
plastic, wood and rocks could be confirmed by comparing their spectral profiles. Anyhow, the 
statistic classification accuracy was comparable to previous studies which used better GSDs and 
had more homogeneous beach backgrounds (Falatti et al., 2019; Gonçalves et al., 2020a,b,c; 
Papakonstantinou et al., 2021; Wolf et al., 2020).  

This study confirms the great potential of (semi-) automatic classification approaches offering a 
method for a time- and cost-efficient large-scale detection of beach litter using drone imagery. 
However, the promising statistical results must always be confirmed by the resulting 
classification maps. In this study, the results showed that a strong overestimation of plastic 
occurs applying classification approaches that focus on the spectral characteristics alone. The 
feature spaces of the applied sensors were not able to distinguish between all occurring land 
cover classes (e.g. plastics, wood and rocks). Therefore, the spectral coverage of the sensors 



 

24 
 

must be extended, or other structural parameters must be included. The application of an object-
based classification could reduce the misclassification of the wood class but would require a 
higher GSD. Image recognition methods are also promising but require a higher GSD and a large 
amount of training data. So far, most studies only focused on litter detection and not litter type 
identification as performed with the OSPAR method. Only Wolf et al. (2020) presented an 
approach for plastic type identification using image recognition techniques. For a future 
implementation into ongoing monitoring programmes, this is an essential step, which must be 
further investigated and developed, considering the required area coverage (limiting the GSD), 
the beach environment and the litter size distribution for the Arctic. 

The WV3 satellite imageries of the study areas were acquired two to eight days before the actual 
field work covering up to 7500 ha and 23 km of coastline. The imagery included eight spectral 
bands from visible to NIR with 1.2 m resolution and eight bands in SWIR with 3.7 m resolution. 
As the occurring plastic objects were of sub-pixel size, a manual screening was not possible. 
Instead, this study focused on the question whether satellite imagery can identify areas of high 
beach litter accumulations. Therefore, the density maps of the manual drone screening were 
used to create a reference data set from which the spectral signal of different land cover classes 
was extracted. The density maps also helped to identify the plastic coverage per WV3 pixel. 
Considering all pixels at 1.2 m resolution which were covered by plastic, 95% and 74% of them 
had a plastic coverage of less than 5% for Svalbard and Greenland respectively. Only a total of 13 
pixels were covered by more than 30% of plastic (1x Svalbard and 12x Greenland). For SWIR 
imagery at 3.7 m resolution, only seven pixels could be identified that were covered by more 
than 10% of plastic with a maximum between 20% and 30% coverage. Studies of floating marine 
litter showed that litter could be detected on Sentinel 2 satellite imagery with a plastic coverage 
in sub-pixel size of 30 – 55% (Biermann et al., 2020; Topouzelis et al., 2019). Sentinel 2 has a 
similar spectral coverage as WV3 imagery with 12 bands from visible to SWIR. A sub-pixel 
detection of plastics over open water for objects covering down to 5% of a pixel was described 
by Garaba et al. (2018b), but only by applying a higher spectral coverage using hyperspectral 
imagery. The only study applying satellite imagery for beach litter detection was conducted by 
Acuña-Ruz et al. (2018) using WV3. These authors applied a semi-automatic classification 
approach on pixel level and could detect litter objects or patches of litter with a minimum size of 
1 m² with an overall accuracy up to 88%.  

A detection of beach litter on a sub-pixel scale by spectral unmixing of the single pixels of WV3 
imagery was not successful in this study. Spectral unmixing intents to identify the percentage of 
each reference material within a pixel by identifying the proportion of the respective signals. In 
difference to floating marine litter the background of beach environments was more complex 
(e.g. vegetation, sand, rocks, wood) and the litter size and spatial distribution were too low. 
When including SWIR imagery, the sub-pixel size of 30 – 55% as described in Biermann et al. 
(2020) and Topouzelis et al. (2019), was not reached for any pixel. Compared to Garaba et al. 
(2018b), the spectral coverage seemed to be insufficient for a sub-pixel detection down to 5%, 
probably also being influenced by the complex background signals. A classification at pixel level 
as described by Acuña-Ruz et al. (2018) was not successful as the litter density and the litter size 
of single objects or patches was not sufficient. Even though high amounts of plastics were 
observed on Arctic beaches, their spatial distribution was too sparse and the object size to small. 

This study investigated the potential application of remote sensing techniques for beach litter 
monitoring in the Arctic. The results showed the great potential for drone surveys and compared 
a manual and a (semi-) automatic detection of plastic objects. The integration of VIR sensors 
could improve the detection accuracy of (semi-) automatic detection, even though the GSD was 
coarser compared to RGB imagery. Anyhow, the litter size distribution, the complex background 
of the beaches, as well as the required high area coverage still pose challenges for beach litter 
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detection. Furthermore, the identification of the detected litter must be further investigated and 
requires both, a very high GSD and large amount of training data. Satellite imagery is still limited 
by its spatial resolution. The litter size and its spatial distribution on Arctic beaches were too 
low to be identified on WV3 imagery. Therefore, a higher spatial resolution or a larger spectral 
coverage is required to also detect lower litter accumulations on beaches from Satellites.  

Applying drone surveys on Svalbard and Greenland, the monitoring time of large areas can be 
reduced by a factor of 22 compared to an OSPAR monitoring. However, for small areas as a 
single 50 m transect, a OSPAR monitoring might be faster because of the time required for the 
data processing of drone imagery. But even when monitoring small areas, drone surveys can be 
beneficial, as the beaches in the Arctic are often remote and the time at the beaches can be 
limited. Satellite imagery permit a high area coverage, but the costs of the data acquisition must 
be further reduced to permit a large-scale application in future. 
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Zusammenfassung 

Das Ziel dieser Studie ist die Entwicklung einer Methode für eine einheitliche und vergleichbare 
Erfassung von Plastikmüll an arktischen Stränden. Dafür soll die konventionelle 
Strandmüllerfassung durch Fernerkundung unterstützt und erweitert werden. Die entwickelte 
Methode wurde an ausgewählten Stränden auf Spitzbergen und Grönland getestet. Die 
Untersuchungsgebiete stellten Strände dar, an denen ein erhöhtes Müllvorkommen aufgrund 
statistischer Auswertungen und Modellergebnissen erwartet wurde. 

In Arbeitspaket 1 hat AquaEcology GmbH & Co. KG (AE) eine Literatursuche zu bestehenden 
Methoden der Strandmüllerfassung durchgeführt. Verschiedene Methoden, wie die von Alkalay 
et al. (2007), Bravo et al. (2009), Cheshire et al. (2009), Opfer et al. (2012) und OSPAR (2010) 
wurden miteinander verglichen. Die OSPAR Methode wird von den europäischen Ländern und 
Grönland verwendet, das Protokoll nach Opfer et al. (2012) von den USA und das Protokoll nach 
Cheshire et al. (2009) von Kanada. Für diese Studie wurde die OSPAR Methode (2010) 
ausgewählt, weil sie die detaillierteste und ausgereifteste Methode darstellt. Im Zuge einer 
OSPAR Erfassung wurden 100 m lange Strandsegmente entlang der Küste nach Müll untersucht 
und die Anzahl der Objekte erfasst. Der erfasste Müll wurde gesammelt und vom 
Untersuchungsgebiet entfernt. Die durchschnittliche Gesamtanzahl von Müll an OSPAR Stränden 
auf Grönland und Spitzbergen wurde für die Jahre 2016 bis 2019 ausgewertet. Auf Grönland 
reichte die Anzahl von einzelnen Müllteilen bis zu über 800 Fundstücken, die an einzelnen 
Strandabschnitten der Westküste gefunden wurden. Auf Spitzbergen lag der Wert der 
durchschnittlichen Gesamtzahl bei etwa 200 Fundstücken. Eine räumliche Auswertung ergab 
eine hohe Ansammlung von Strandmüll an Orten, die exponiert für Wind und Strömung waren. 
Dies deutet auf einen großen Einfluss von Müll aus seebasierten Quellen hin, der zu großem Teil 
von der Schifffahrt und der Fischerei stammt. Die Bedeutung der Fischerei als Quelle von 
Plastikmüll in der Arktis wurde in anderen Studien bestätigt (Bergmann et al., 2017; Buhl-
Mortensen and Buhl-Mortensen, 2017; Tekmann et al., 2017). 

BioConsult SH GmbH & Co. KG (BCSH) hat eine Literatursuche zu bestehenden Anwendungen 
der Fernerkundung zur Erfassung von Strandmüll durchgeführt. Die Literatursuche hat einen 
Schwerpunkt auf die drei Fernerkundungsplattformen Satellit, Flugzeug und Drohne (UAV) 
gelegt und sie anhand ihrer spektralen und räumlichen Auflösung, der abdeckenden Fläche, 
Einschränkungen bei der Erfassung und ihrer Kosten verglichen. Die Ergebnisse der 
Literatursuche ergaben ein großes Potential von Satelliten für die Detektion von Strandmüll in 
der Arktis, da sie eine großflächige Erfassung bei einer breiten spektralen Abdeckung 
ermöglichen. Satellitenerfassungen sind prädestiniert für eine Kartierung in unzugänglichem 
Gelände, die ansonsten hohe Kosten und einen großen Zeitaufwand an Feldarbeit mit sich 
bringen würde. Zahlreiche Studien haben bereits das Potential von Satellitenerfassung für die 
Erfassung von spektralen Eigenschaften von Plastik gezeigt (Topouzelisa et al. 2019, Biermann 
et al. 2020, Acuña-Ruz et al. 2018 and Maximenko et al. 2019). Die größte Einschränkung stellt 
die relativ grobe räumliche Auflösung dar. Im Multispektralbereich liegt sie bei >1 m und somit 
bei einer Pixelgröße von 1 m². Dadurch sind selbst auf Pixelbasis nur Objekte ab einer Größe von 
1 m² erkennbar. Eine Klassifikation auf Sub-Pixel Ebene wurde bislang nur über Wasser 
getestet. Eine weitere Einschränkung ist die hohe Wolkenbedeckung in der Arktis, die ein grobes 
Erfassungszeitfenster und eine hohe Wiederbesuchsrate des Satelliten nötig macht.  

Auch Flugzeugerfassungen eignen sich für die Detektion von Plastikmüll. Zahlreiche Studien 
haben Strand-/ und Meeresmüll mit Flugzeugen erfasst und die Daten sowohl visuell als auch 
(halb-) automatisch ausgewertet (Garaba et al. 2018, Garaba et al. 2018b, Moy et al. 2018, Pichel 
et al. 2012 and Garcia-Garin et al. 2019). Die visuelle Auswertung ermöglichte die Erfassung von 
Objekten der zehnfachen Pixelgröße. Garaba et al. 2018b beschreiben zudem eine mögliche 
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Erfassung von Plastikmüll über Wasser in Hyperspektralbildern. Eine (teil-) automatische 
Klassifikation ermöglicht eine Erfassung von Objekten im Sub-Pixel Bereich, die 5% eines Pixels 
abdecken und damit eine Erfassung von Objekten in der Größenordnung von 0.025 m x 0.06 m. 
Flugzeugerfassungen ermöglichen eine hohe räumliche Auflösung bei einer großen spektralen 
Abdeckung. Die größte Einschränkung sind jedoch die relativ hohen Kosten insbesondere für 
eine Arktis-weite Erfassung. Die Kosten beinhalten Instrumente, Flugzeug und Treibstoff, 
Mobilisierung und Personalkosten (Coulter et al. 2007). BCSH schätzt die räumliche Abdeckung 
einer Flugzeugerfassung pro Tag auf etwa 800 km Küstenlinie ein bei einer Flughöhe von 550 m. 
Dieser Wert ist als grobe Einschätzung zu verstehen und kann abhängig von den 
Küsteneigenschaften signifikant variieren.  

Auch UAVs wurden bereits erfolgreich für die Erfassung von Strandmüll verwendet. Sowohl 
visuelle als auch (teil-) automatische Methoden kamen zum Einsatz, wobei (teil-) automatischen 
Klassifikationen bisher nur über Sandstränden durchgeführt wurden (Martin et al. 2018, Bao et 
al. 2018). UAVs ermöglichen die höchste räumliche Auflösung der drei Methoden mit 
Auflösungen <1 cm im RGB und 3.4 cm für Multispektral Sensoren. Der Einsatz von 
Hyperspektral-Sensoren ist möglich, jedoch noch sehr kostenintensiv. Die geringen Kosten und 
die schnelle Durchführbarkeit einer Befliegung machen UAVs vor allem für kleinräumige 
Erfassungen und als Unterstützung konventioneller Strandmüllerfassung interessant. Die größte 
Einschränkung sind die Kosten einer großflächigen Anwendung und die schwierige Anwendung 
in unzugänglichem Gelände. Weitere Einschränkungen sind Regen und starker Wind 
(>30 km/h). 

Zusätzlich zu den drei Fernerkundungsplattformen wurde die Möglichkeit einer (teil-) 
automatischen Erfassung untersucht. Für eine Arktis-weite Erfassung von Strandmüll bieten 
sich Satellitendaten an und somit eine (teil-) automatische Erkennung auf Pixelebene anhand 
der spektralen Eigenschaften von Plastik. Garaba et al. (2020) haben die spektralen 
Eigenschaften von Plastik untersucht und charakteristische Wellenlängenbereiche identifiziert 
(um 931 nm, 1215 nm, 1417 nm und 1732 nm). Sensoren, die diese Bereiche abdecken, sind für 
eine (teil-) automatische Erkennung von Plastikmüll sehr geeignet. BCSH spricht sich nach 
vorausgegangener Literatursuche für die Kombination von mindestens zwei Plattformen aus, 
um von Synergieeffekten zu profitieren. Für diese Studie empfiehlt BCSH eine Kombination aus 
WorldView3 (WV3) Satelliten Daten und UAV-Aufnahmen eines MicaSense Altum-Sensors. Die 
Kombination aus flächendeckenden Satellitendaten mit hoher spektraler Abdeckung und UAV-
Daten mit sehr hoher räumlicher Auflösung wird als vielversprechend angesehen. 

In Arbeitspaket 2 haben AE und BCSH Daten zusammengestellt, die nötig sind, um potenzielle 
Ansammlungen von Strandmüll auf Grönland und Spitzbergen zu erkennen. Die benötigten 
Daten umfassen georeferenzierte Informationen zu Siedlungen, Häfen, Strömungen und Wind, 
sowie von Deponiegeländen und Müllverbrennungsanlagen. AE hat zudem georeferenzierte 
Shape Files zu Meteorologischen Stationen, Häfen und Siedlungen erstellt und die Daten zur 
Schifffahrt und Fischerei in der Arktis (ASTD) Daten zur Schifffahrt und Fischerei zu 
Gesamthäufigkeiten für West- und Ost-Grönland aggregiert. Im Anschluss hat AE eine 
statistische Analyse durchgeführt, um die Ursachen von Strandmüll Ansammlungen auf 
Grönland zu untersuchen.  

Dafür wurde eine permutationale Analyse der Kovarianz (PERMANCOVA) berechnet. Als 
unabhängige Variablen wurden Fischerei, Einwohnerzahl, Entfernung zu Siedlungen, Entfernung 
zum nächsten Hafen und Übernachtungen gewählt. Die durchschnittliche Gesamtanzahl an Müll 
von OSPAR-Stränden auf Grönland wurde als abhängige Variable festgelegt. Die Ergebnisse 
zeigen, dass Normalität und Varianzhomogenität gegeben waren, jedoch eine Autokorrelation 
nicht endgültig ausgeschlossen werden konnte. Das Modell gilt somit als nicht, beziehungsweise 
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wenig verzerrt („biased“). Das Bestimmtheitsmaß nimmt mit 0.83 einen sehr guten Wert an. Die 
Analyse ergibt einen signifikanten Einfluss von Fischerei und Tourismus auf das Aufkommen 
von Strandmüll. Vor allem die Ergebnisse bezüglich Fischerei stehen in Übereinstimmung mit 
zahlreichen Studien, die auf den Einfluss von seebasierten Quellen auf 
Strandmüllansammlungen hinweisen (Bergmann et al. 2017, Kirkfeldt 2016, Tekmann et al. 
2017). Weitere Hinweise auf erhöhte Mengen an Strandmüll geben Wind- und Strömungsdaten. 
Strände, die besonders exponiert gegenüber Strömungen und auflandigem Wind sind, weisen 
die höchsten Aufkommen von Strandmüll auf. Zudem scheint die Nähe zu größeren Städten 
einen Einfluss zu haben. Die Analyse ergibt, dass hohe Ansammlungen in der Nähe von Nuuk 
und Upernavik zu erwarten waren. Auf Spitzbergen dominieren östliche Winde. Somit wurden 
geringe Abundanzen an der Westküste erwartet. Große Mengen an Strandmüll wurden im 
Norden Spitzbergens festgestellt, an Stränden, die sehr gegenüber Wind und Strömung 
exponiert sind. (Bergmann et al., 2017). 

BCSH hat zudem einen Modell-basierten Ansatz genutzt, um Küstenabschnitte auf Spitzbergen 
zu identifizieren, die eine hohe Wahrscheinlichkeit für Ansammlungen von Strandmüll 
aufweisen. Dafür wurden zwei Strömungsdatensätze mit unterschiedlicher räumlicher 
Auflösung verwendet. Monatliche Dichteverteilungen von Fischerei wurden als Grundlage 
genommen, um einen Datensatz von Plastikpartikeln auf See zu erstellen. Dabei wurde für jeden 
Monat eine zufällige Verteilung von Plastikpartikeln für Abschnitte je 100 km erstellt. Die 
monatlichen Datensätze dienten als Eingabedaten der Modelle. Ein Datensatz mit geringer 
räumlicher Auflösung, aber großer Flächenabdeckung wurde von der Marine Copernicus 
Website (https://marine.copernicus.eu) heruntergeladen und für eine Simulation der 
Verbreitungswege der Plastik Partikel benutzt. Des Weiteren dienten die Ergebnisse als 
Grundlage für das Modell mit einer hohen räumlichen Auflösung. Der Datensatz der Marine 
Copernicus Website hat eine räumliche Auflösung von 0.025°, eine räumliche Ausdehnung 
zwischen -10°W bis 60°E und von 55°N bis 90°N, und eine zeitliche Abdeckung von zwei Jahren, 
von August 2008 bis August 2010. Der zweite Datensatz stammt von der Homepage des 
Norwegian Meteorological Service (https://api.npolar.no) und hat eine hohe räumliche 
Auflösung, jedoch eine geringe Flächenabdeckung. Der Datensatz ist für die Jahre 2005 bis 2010 
verfügbar und hat eine räumliche Auflösung von 800 m, deckt jedoch nicht das gesamte 
Fischereigebiet rund um Svalbard ab. Als Simulationszeit der Anwendung wurde für beide 
Modelle der Zeitraum zwischen August 2009 und August 2010 gewählt. Daten zu Wind und 
Wellen waren für das Untersuchungsgebiet in dem Untersuchungszeitraum nicht verfügbar und 
konnten deshalb nicht in diese Studie integriert werden.  

Das Modell wurde mit OpenDrift v1.0 gerechnet, einer Open-Source-Python-basierten 
Anwendung für Lagrange-Partikelmodellierung, die oft zur Bestimmung von Verbreitungswegen 
schwimmender Objekte im Ozean verwendet wird (Dagestad et al. 2018). Auf Grund der 
fehlenden Wind- und Wellen-Daten wurde ein Unsicherheitsfaktor von 10% verwendet. Beide 
Modelle zeigten eine ähnliche Verteilung der gestrandeten Partikel mit einer hohen 
Strandungswahrscheinlichkeit an der südlichen und westlichen Küste von Spitzbergen. Ein 
lineares Regressionsmodell bestätigte die Übereinstimmungen der beiden Modelle mit einem 
Bestimmtheitsgrad (R²) von 0.758., zeigte jedoch große Unterschiede an der südlichen Küste. 
Beide Modelle deuten auf eine hohe Wahrscheinlichkeit von Strandmüll-Ansammlungen an der 
Westküste Spitzbergens hin, was im Gegensatz zur Annahme von niedrigen Ansammlungen auf 
Grund der dominierenden Ost-Winde steht. Eine Erklärung kann die fehlende Windkomponente 
des Models geben. Das im Zuge der Feldarbeit ermittelte Strandmüllvorkommen kann dazu 
dienen, die Modellergebnisse weiter zu verbessern und sollte in zukünftigen Anwendungen mit 

https://marine.copernicus.eu/
https://api.npolar.no/
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einbezogen werden. Für zukünftige Modelle empfiehlt BCSH zudem die Einbeziehung der 
Leeway-Konfiguration, die im Vergleich zu PlasticDrift eine genauere Modellkonfiguration für 
große Plastikpartikel darstellt. Für die Anwendung der Leeway-Konfiguration werden jedoch 
Wind- und Wellendaten benötigt. BCSH empfiehlt zudem die Anwendung des Copernicus-
Modells, das verglichen mit dem API-Modell zu ähnlichen Ergebnissen kommt und nicht auf die 
Jahre 2005 bis 2010 beschränkt ist. Zusätzliche Eingabeparameter wie Küsteneigenschaften 
(Strand oder Klippe), die Neigung des Strandes oder der Welleneinfallswinkel können das 
Modell weiter verbessern, übersteigen jedoch den Rahmen dieser Studie. 

Die Expedition nach Spitzbergen dauerte vom 25. Juni, 2021 bis zum 17. Juli, 2021. Insgesamt 
wurden zwei 50 m-Abschnitte eines Strandes bei Kapp Mitra vollständig nach der OSPAR-
Methode kartiert. Die Koordinaten wurden mittels eines hochauflösenden GPS bestimmt. Die 
Koordinaten einzelner Müllteile konnten mangels Zugangs zu Internet und Funk nicht gemessen 
werden. Während des Aufenthaltes auf Grönland wurden in der Nähe von Nuuk und Sisimiut 
Strandmüllerhebungen durchgeführt mit bis zu vier Replikat-Strandabschnitten. Die Anreise zu 
den ausgewählten Stränden erfolgte per Boot mit einem Bootsführer. Herkömmliche 
Erhebungen wurden nach der OSPAR-Methode (OSPAR, 2010) durchgeführt, wobei die aktuelle 
Kategorisierung von 2021 verwendet wurde. Die Kategorisierung wurde um Strandmülltypen 
ergänzt, die für die Westküste Grönlands charakteristisch sind. Diese neuen Mülltypen wurden 
aus dem Strietmann et al. (2021) abgeleitet und basieren auf der Aufteilung der OSPAR-
Strandmülltypen, wie dies in ähnlicher Weise durch die Joint Category-List der Meeres-
Strategie-Rahmenrichtlinie erfolgt ist. Power-Analysen für einseitige Wilcoxon-
Rangsummentests mit einer Stichprobe wurden gerechnet, um abzuschätzen, wie lang 
Strandabschnitte sein müssen, um eine signifikante Verringerung der Strandverschmutzung um 
bis zu 10%, 20%, 30%, 40% und 50% zu erkennen. Hierfür wurde ein Signifikanzniveau von 
0,05 verwendet.  

Auf Spitzbergen lag die durchschnittliche Gesamtabundanz bei 28,5 Müllteilen pro 50 m Strand. 
Der Strandmüll bestand zu 57,9% aus Plastik, zu 40,4% aus Holz und zu 1,7% aus Gummi. Der 
hohe Plastikanteil stimmt gut mit den Ergebnissen früherer Strandmülluntersuchungen auf 
Spitzbergen überein (Bergmann et al., 2017). Unter den Top-14-Müllkategorien waren sechs 
eindeutig der Fischerei und der Schifffahrt zuzuordnen. Dadurch wird die Bedeutung von 
seebasierten Quellen hervorgehoben, was mit den Ergebnissen früherer Studien übereinstimmt 
(Bergmann et al., 2017; Weslawski und Kotwicki, 2018). In der Nähe von Nuuk und Sisimiut 
betrug die durchschnittliche Gesamtabundanz an Strandmüll 116,4 ± 111,9 Teile bzw. 87,3 ± 
33,5 Teile auf einem 50 m langen Strandabschnitt. Dies lag in der gleichen Größenordnung, wie 
von Strietmann et al. (2021) an der Westküste Grönlands gefunden wurde. Die 
Materialzusammensetzung wurde von Plastik und verarbeitetem Holz dominiert, was wiederum 
mit den Ergebnissen von Strietmann et al. (2021) übereinstimmt. Unter den Top-Ten-Mülltypen 
waren solche am häufigsten, die eindeutig seebasierten Quellen zugeordnet werden können. 
Dieser Befund steht teilweise im Widerspruch zu den Ergebnissen von Strietmann et al. (2021), 
die feststellten, dass Hausmüll an der Westküste von Grönland überwiegt. Diese Unterschiede 
sind eventuell darauf zurückzuführen, dass die letztgenannten Autoren zum Teil in größerer 
Nähe zu Siedlungen kartierten als in der vorliegenden Studie. Die genauen Entfernungen zu 
Siedlungen sind in der Studie von Strietmann et al., 2021 jedoch nicht angegeben. Die Power-
Analysen ergaben Teststärken <50% und >80% für Strände in der Nähe von Nuuk bzw. Sisimiut 
für eine Verringerung des Strandmülls um 50%. Bei niedrigeren Reduktionsraten war die 
statistische Teststärke noch geringer und damit nicht ausreichend. Kartierte Strandabschnitte 
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sollten daher eine Mindestlänge von 200 m aufweisen, wie anhand der Poweranalysen an Daten 
von vier 50 m-langen Strandreplikaten in der Nähe von Sisimiut gezeigt werden konnte. Aus 
logistischer Sicht unterstützt dies wiederum den Einsatz von Fernerkundungsdaten für 
Strandmüllerhebungen auf Grönland. 

Um das Potenzial von Fernerkundungstechniken für Strandmüllerfassungen in der Arktis zu 
untersuchen, wurden Drohnen- und Satellitenbilder erfasst bzw. erworben.  

Für die Drohnenerfassung wurde eine WingtraOne Drohne mit zwei Sensoren benutzt, die Sony 
QX1 (RGB) und die Micasense Altum (VIR) mit einer ground sample distance GSD von 1,4 cm 
bzw. 3,4 cm. Die Drohnenflüge fanden im Vorfeld des OSPAR Monitorings statt, damit 
Müllobjekte nicht versehentlich bewegt oder verschüttet werden. Insgesamt wurden acht 
Untersuchungsgebiete beflogen, zwei auf Spitzbergen und sechs auf Grönland. Die dabei 
erfassten Flächen umfassten zwischen 1,31 ha und 33,85 ha. Es fanden pro Gebiet mindestens 
zwei Flüge, eine pro Sensor, statt. Die Flugzeit pro Untersuchungsgebiet lag zwischen 06:56 und 
59:26 Minuten, wobei zwischen 108 und 1877 Bilder aufgenommen wurden. Die einzelnen 
Bilder wurden mit Hilfe von post-processed kinematics (PPK) zentimetergenau georeferenziert. 
Anschließend wurden in der Photogrammetrie-Software Pix4D mapper Version 4.6.4 
Höhenmodelle, Orthofotos und Indexkarten erstellt. Die Orthofotos des RGB Sensors wurden in 
einer GIS-Umgebung (QGIS version 3.16.6.) mit einem Maßstab von 1:20 manuell gesichtet, 
wobei alle gefundenen Müllobjekte als Polygone markiert wurden. Insgesamt wurden zwischen 
0 und 63 Müllobjekte erfasst. Im Vergleich zur OSPAR Erfassung wurden im Mittel 14,8% der 
Müllobjekte gefunden mit einem Maximalwert von 24%. Frühere Studien zur 
Strandmüllerfassung mit Drohnen konnten zwischen 18% (Merlino et al., 2020) und nahezu 
100% der Müllobjekte detektieren (Andriolo et al., 2020; Escobar Sánchez et al., 2021; 
Gonçalves et al., 2020b). Für die große Variabilität wurden drei Faktoren identifiziert, die auch 
für die vergleichsweise niedrige Erfassungsrate in dieser Studie verantwortlich sein können: Die 
Größenverteilung der Müllobjekte, Strand- und Umgebungsparameter und die GSD der 
Drohnenbilder. Je kleiner Müllobjekte sind, desto schwieriger ist es, sie auf den Drohnenbildern 
zu erkennen. Deshalb ist die Erfassungsrate von Müllobjekten stark abhängig von der 
Größenverteilung der Müllobjekte vor Ort (Martin et al., 2018; Merlino et al. 2020; Lo et al., 
2020). Auf den Drohnenbilder der erfassten Strände in der Arktis wurden zu einem Großteil 
(> 70%) Müllobjekte gefunden, die größer als 10 cm waren, was die Schwierigkeit der Erfassung 
kleinerer Objekte bestätigt. Des Weiteren wird die manuelle Sichtung erheblich durch das 
Strandsubstrat (sandig oder steinig) und die Heterogenität (Vorkommen von Vegetation, Holz 
oder Steinen) beeinflusst. Die Strände auf Grönland und Spitzbergen waren zum Großteil 
heterogen mit farbigen Steinen, Vegetation und Treibholz, die alle mit Müllobjekten verwechselt 
werden konnten. Merlino et al. (2020) beschrieb ähnliche Schwierigkeiten bei der Erfassung 
kleiner Müllobjekte auf heterogenen Stränden, selbst bei einer GSD von 0,18 cm. Der dritte 
Parameter, die GSD ist der Einzige, der direkt beeinflusst werden kann und hängt maßgeblich 
von dem verwendeten Sensortyp und der Flughöhe ab. Ein niedriger GSD-Wert verringert die 
Minimalgröße eines Objektes, die notwendig zur deren Erfassung ist, kann aber auch zu einer 
niedrigeren Flächenabdeckung führen.  

Die während der manuellen Sichtung erfassten Objekte wurden zur Erstellung einer Dichtekarte 
verwendet und dienten als Referenz für die Auswertung der WV3 Satellitenbilder. Außerdem 
wurden sie benutzt, um verschiedene Anwendungen des Maschinellen Lernens (Random Forest, 
Support Vector Machine, Neural Networks) zu trainieren und zu validieren. Die besten 
statistischen Ergebnisse wurden mit Random Forest und VIR-Drohnenbildern erzielt und 
ergaben eine Gesamtgenauigkeit (OA) von 90,6% bei einem F-score von 77%. Die dazugehörige 
Benutzergenauigkeit (UA) betrug 81,5%. Vor allem Steine und Holz wurden häufig 
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fälschlicherweise als Plastik klassifiziert. Da das Müllvorkommen deutlich kleiner als das 
Vorkommen von Steinen und Holz war, führte schon ein geringer Prozentsatz an falsch 
bestimmten Steinen und Holz zu einer erheblichen Überschätzung von Plastikmüll. Die 
Schwierigkeit der Algorithmen, Plastik von Steinen und Holz auf Basis der spektralen 
Eigenschaften zu unterscheiden, wurde durch einen Vergleich der jeweiligen spektralen Kurven 
bestätigt. Vergleicht man nur die statistischen Ergebnisse der Klassifikationsgenauigkeit mit 
früheren Studien, konnten trotz gröberer GSD und heterogeneren Stränden, vergleichbare 
Ergebnisse erzielt werden (Falatti et al., 2019; Gonçalves et al., 2020a,b,c; Papakonstantinou et 
al., 2021; Wolf et al., 2020).  

Diese Studie bestätigt das große Potential (halb-) automatischer Klassifikationsmethoden für 
eine zeit- und kosteneffiziente, großflächige Erfassung von Strandmüll in der Arktis mit Hilfe von 
Drohnenbildern. Trotz der vielversprechenden statistischen Ergebnisse müssen diese jedoch 
stets durch die Ergebnisse der Klassifikationskarten bestätigt werden. Die Ergebnisse der 
Drohnen-gestützten Klassifikation in der Arktis zeigen dabei eine starke Überschätzung des 
Plastikvorkommens. Anhand der spektralen Eigenschaften des Drohnensensors war es nicht 
möglich, alle vorkommenden Materialien voneinander zu unterscheiden (u.a. Plastik, Holz und 
Steine). Daher muss die spektrale Abdeckung der Sensoren erweitert, oder andere 
Strukturparameter mit einbezogen werden. Die Anwendung von Objekt-basierten 
Klassifikationsmethoden könnte die Unterscheidbarkeit von Holzobjekten und Plastik 
verbessern, benötigt jedoch eine bessere GSD. Auch Verfahren der automatischen 
Bildererkennung sind vielversprechend, sie benötigen jedoch auch eine niedrigere GSD und eine 
sehr große Anzahl an Trainingsdaten. Neben einer Mülldetektion sollte langfristig auch eine 
Identifikation der Strandmüllobjekte angestrebt werden. Bisher wurde eine solche nur durch 
Wolf et al. (2020) mit Hilfe von Bilderkennungstechniken erprobt. Für eine Integration in 
bestehende Monitoring Programme ist die Identifikation der erfassten Müllobjekte jedoch 
essenziell und sollte mit einem Fokus auf die Arktis-spezifischen Anforderungen (die benötigte 
Flächenabdeckung und dadurch limitierte GSD, die Strandparameter und die Größenverteilung 
der Müllobjekte) weiter erprobt werden. 

Für die Erprobung von Satellitenbildern wurden WV3-Bilder zwei bis acht Tage vor der 
Feldarbeit aufgezeichnet. Die erfassten Satellitenbilder erstrecken sich über eine Fläche von bis 
zu 7500 ha bei einer Küstenlänge von bis zu 23 km. Die WV3 Bilder deckten dabei acht spektrale 
Bänder im sichtbaren bis NIR Bereich mit einer Auflösung von 1,2 m und acht Bänder im SWIR 
Bereich mit 3,7 m Auflösung ab. Da die vorkommenden Plastikobjekte im Sub-Pixel Bereich 
lagen, war eine manuelle Sichtung nicht möglich. Stattdessen wurde untersucht, ob 
Müllansammlungen mit Hilfe der spektralen Eigenschaften detektiert werden können. Die 
Dichtekarten der manuellen Drohnensichtung wurden als Referenzdaten genutzt, und die 
spektralen Eigenschaften der vorkommenden Materialien wurden untersucht. Die Dichtekarten 
dienten des Weiteren dazu die Plastikabdeckung der einzelnen Pixel zu bestimmen. Unter 
Einbezug aller Pixel mit einer Auflösung von 1,2 m, die ein Plastikvorkommen aufwiesen, 
wurden 95% bzw. 74% (Spitzbergen bzw. Grönland) dieser von weniger als 5% Plastik 
abgedeckt. Insgesamt wurden lediglich 13 Pixel identifiziert, die eine Plastikabdeckung von 
mehr als 30% aufweisen (1x Spitzbergen und 12x Grönland). In den WV3 SWIR Bildern 
(Auflösung von 3,4 m) wurden sieben Pixel identifiziert, die mehr als 10% Plastik enthielten bei 
einer maximalen Abdeckung zwischen 20% und 30%. Vorherige Studien zu schwimmendem 
Meeresmüll zeigten, dass Müllobjekte, die bis zu 30% - 55% eines Pixels abdeckten, auf 
Sentinel 2-Satellitenbildern erkannt werden konnten (Biermann et al., 2020; Topouzelis et al., 
2019). Sentinel 2 weist dabei eine ähnliche spektrale Abdeckung wie WV3 auf mit 12 Bändern 
vom sichtbaren bis zum kurzwelligen-Infrarot (SWIR) Bereich. Garaba et al. (2018b) 
beschrieben zudem eine Sub-Pixel Erfassung von Plastikmüll über offenem Wasser für Objekte, 
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die bis zu 5% eines Pixels abdecken. Dies erfolgte jedoch unter Verwendung einer höheren 
spektralen Abdeckung mit Hilfe eines Hyperspektralsensors. Die bisher einzige publizierte 
Erfassung von Strandmüll mit Hilfe von Satellitenbildern wurde von Acuña-Ruz et al. (2018) 
durchgeführt. Die Autoren verwendeten WV3 Bilder für eine (halb-) automatische Erfassung von 
Plastikmüll auf Pixelebene und konnten Müllobjekte in einer Größenordnung von ca. 1 m² mit 
einer Gesamtgenauigkeit (OA) von 88% erfassen. 

Die Erfassung von Strandmüll auf Sub-Pixel Ebene durch spektrales Entmischen der WV3 Bilder 
war in dieser Studie nicht erfolgreich. Beim spektralen Entmischen soll der Anteil der einzelnen 
Referenzmaterialien innerhalb eines Pixels identifiziert werden, indem der Prozentsatz der 
jeweiligen spektralen Signale am Gesamtsignal des Pixels identifiziert wird. Im Gegensatz zu 
Studien, die Meeresmüll erfasst haben, waren die Hintergrundsignale der Strände zu komplex 
(u.a. Vegetation, Sand, Steine und Holz), und die Größe der Müllobjekte sowie die Mülldichte 
waren zu gering. Bei Einbezug der SWIR Bilder konnte eine Sub-Pixel Abdeckung von 
30% - 55% wie in Biermann et al. (2020) and Topouzelis et al. (2019) nicht erreicht werden. 
Verglichen zu Garaba et al. (2018b) scheint die spektrale Abdeckung nicht groß genug gewesen 
zu sein, um Sub-Pixel mit bis zu 5% Plastikabdeckung zu erkennen. Für eine Klassifizierung auf 
Pixelebene, wie in Acuña-Ruz et al. (2018) beschrieben, waren die Größe der Müllobjekte sowie 
die Mülldichte zu gering.  

In dieser Studie wurde die Anwendung von Fernerkundungsmethoden zur Erfassung von 
Strandmüll in der Arktis untersucht. Die Ergebnisse zeigen dabei ein großes Potenzial für 
Drohnenerfassungen. Die Anwendung eines VIR-Sensors wurde erfolgreich erprobt und es 
konnte damit eine höhere Gesamtgenauigkeit (OA) im Vergleich zur Anwendung von RGB 
Bildern erreicht werden, obwohl die GSD der RGB-Bilder niedriger war. Dennoch stellen die 
Größenverteilung der vorkommenden Müllobjekte, die heterogene Strandumgebung, sowie die 
geforderte hohe Flächenabdeckung eine große Herausforderung dar. Neben der reinen 
Erfassung von Müllobjekten muss in Zukunft zudem ein Fokus auf der Identifikation der Objekte 
liegen. Diese benötigt jedoch eine stark verbesserte GSD und eine große Anzahl an 
Trainingsdaten. Eine Erfassung von Strandmüllansammlungen mit Hilfe von Satellitenbildern ist 
auf Grund der räumlichen Auflösung stark eingeschränkt. Die Größe der in Grönland und 
Spitzbergen vorkommenden Müllobjekte sowie die Mülldichte waren zu gering, um diese auf 
WV3 Satellitenbildern zu erkennen. Eine höhere räumliche Auflösung oder eine größere 
spektrale Abdeckung wären erforderlich, um auch geringere Müllansammlungen an Stränden 
mit Hilfe von Satelliten zu erkennen. 

Die Auswertung der Drohnendaten auf Spitzbergen und Grönland haben gezeigt, dass die Zeit, 
die für eine großflächige Erfassung von Strandmüll benötigt wird, durch den Einsatz von 
Drohnen um bis zu 22-fach reduziert werden kann im Vergleich zu einer Strandmüllerfassung 
nach OSPAR. Für kleine Flächen, wie ein einzelnes 50 m Transekt, kann eine Erfassung nach 
OSPAR jedoch schneller sein. Grund dafür ist die Zeit, die für die Datenprozessierung benötigt 
wird. Trotzdem können Drohnenaufnahmen auch zur Erfassung kleiner Gebiete von Vorteil sein, 
da die Strände in der Arktis oft abgelegen sind und die Zeit an den Stränden begrenzt sein kann. 
Satellitenbilder ermöglichen eine hohe Flächenabdeckung, wie sie in der Arktis benötigt wird. 
Jedoch müssen die Kosten der Datenerfassung weiter gesenkt werden, um eine kosteneffiziente 
und großflächige Anwendung in Zukunft zu ermöglichen. 
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1 Introduction 
During the last decades, marine pollution with anthropogenic litter has become a major 
environmental problem worldwide. Numerous studies carried out in marine compartments have 
focused on temporal and spatial trends of anthropogenic marine litter, especially on that made 
of plastic (Browne et al., 2010; Galgani et al., 2000; Howell et al., 2012; Ribic et al., 2010). Marine 
litter has adverse impacts on marine animals through entanglement of marine vertebrates and 
invertebrates in discarded and lost fishing gear and other plastic litter items (Bullimore et al., 
2001; Fowler, 1987; Gregory, 2009; Matsuoka et al., 2005; Pichel et al., 2012; Votier et al., 2011), 
as well as through ingestion, especially of micro- and mesoplastics (Browne et al., 2008; van 
Franeker et al., 2011). Because of their durability and associated long lifespan, floating debris 
can also act as a vector for invasive species (Barnes and Fraser, 2003; Barnes and Milner, 2005; 
Majer et al., 2012). In several international treaties on the protection of the seas, beach litter has 
become an indicator of the overall pollution of marine waters with artificial debris (OSPAR, 
1992, MSFD, 2008, 2010). In the past, several methods have been developed to quantify the 
amount of litter washed ashore (Alkalay et al., 2007; Bravo et al., 2009; Cheshire et al., 2009; 
Opfer et al., 2012; OSPAR, 2010). These methods require the presence of surveyors on the beach 
to be surveyed for beach litter, and therefore, they are not efficient or applicable in remote areas, 
such as Arctic coastlines, which are barely accessible to beach goers. The project at hand was 
launched to handle these problems and to develop an Arctic-wide monitoring of beach litter 
applying remote sensing techniques. 

This project is structured into four work packages: 

• Work Package 1: Literature research on possible methods of beach litter detection, 
including remote sensing-based techniques 

• Work Package 2: Identification of potential hotspots of beach litter accumulation  

• Work Package 3: Test and validation of the developed methodology on selected beaches 
with high abundances of beach litter 

• Work Package 4: Participation in scientific conferences 

Hence, in this project, innovative remote sensing techniques for the quantification of beach litter 
have been developed and tested on sections of beaches on Greenland and Svalbard. For this 
purpose, initially, beaches with high abundances of beach litter had to be identified and selected 
to obtain a sufficiently high number of litter items, necessary for the training and testing of 
algorithms of automatic image recognition and land use classification.  

In work package 1 of the study, BioConsult SH & Co. KG (BCSH) conducted literature research on 
remote sensing techniques for the detection of plastic litter on Arctic beaches, summarizing and 
comparing the three main platforms, satellite, aircraft, and drone (UAV). Finally, BCSH gives a 
recommendation for the method to being applied in this study. 

In work package 1 and 2, AquaEcology GmbH & Co. KG (AE) has taken responsibility to identify 
appropriate beach sections on Greenland and Svalbard. Data on amounts of beach litter from 
previous studies, as well as information on driving forces, linked to potential enrichments of 
beach litter, such as data on wind, currents, settlements, harbours, tourism, fishing, and shipping 
activities, have been acquired and used for this purpose. This data was used as input for a 
statistical model explaining the variation of total abundances of beach litter on the coast of 
Greenland. BCSH performed a modelling approach as an additional indicator for areas of 
potential beach litter accumulation; two models were run on the area around Svalbard. In 
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addition to the main goal of the identification of potential hotspots, the model aimed to identify 
the main input parameters required to predict litter accumulation and to compare how different 
model resolutions influence the model output. 

In work package 3, on the selected beach sections, AE and BCSH performed beach litter surveys 
with the support of Orbicon Arctic (OA) and the Norsk Polar Institute (NP). In parallel, BSCH 
applied remote sensing techniques, namely automatic imaging from a drone, and satellite images 
were acquired for the same beach section and survey date. Finally, the remote sensing 
techniques were calibrated and validated by means of results of the beach litter surveys. Due to 
the prevalent Covid-19 situation, the planned fieldwork season 2020 was postponed into the 
summer 2021. 
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2 Work package 1 

2.1 Traditional beach litter monitoring 

2.1.1 Methods 

AE has performed a literature study on methods of beach litter monitoring worldwide and in the 
Arctic. Beach litter data were taken from Bergmann et al. (2017), as well as from Weslawski and 
Kotwicki (2018). Geo-referenced shape files were generated from these data. In addition, OSPAR 
beach litter data from Iceland, Svalbard, and Greenland were downloaded from the online 
OSPAR beach litter database (https://www.mcsuk.org/ospar/). Descriptive statistics on OSPAR 
beach litter data were calculated using the open source software R (https://cran.r-project.org). 
While beach litter data were downloaded from the web and taken from publications, 
information on potential drivers of beach litter was partly provided by the project partners 
Orbicon Arctic A/S (OA) and the Norsk Polar Institute (NP). 

2.1.2 Results and Discussion 

2.1.2.1 Available monitoring protocols of beach litter 

Worldwide, there has been a number of different beach litter monitoring methods, such as those 
by Alkalay et al. (2007), Bravo et al. (2009), Cheshire et al. (2009), Opfer et al. (2012) and OSPAR 
(2010).  

Alkalay et al. (2007) ignored waste other than plastic items and monitored transects 
perpendicular to the strandline. Abundances of plastic particles larger than 2 cm were chosen as 
the basis for a simple beach pollution index. Surveys are carried out every two weeks. In order 
to achieve optimal characterization of beach cleanliness, transects of 10 m in width are 
surveyed. 10 m transects are assumed to reliably represent the cleanliness of the beach. To 
facilitate the counting procedure, transects are divided into 5 strips of 2 m in width. Beaches are 
morphologically defined as segments, each characterized by the same coastal conditions 
(sandy/gravelly, narrow/wide, open/bordered by cliffs, etc.). To eliminate bias, the exact 
measurement location point is not defined, and the surveyors choose the measurement location 
randomly before entering the beach (for example by choosing a number of footsteps), prior to 
knowledge of its cleanliness. Once reaching the location, the exact point is taken as 
representative of the beach cleanliness. Beach litter density is given in [parts/m2]. Results for 
appearance of litter on the coasts are graded as follows: 

► 0–0.1 parts/m2—very clean—no litter is seen, 

► 0.1–0.25 parts/m2—clean—no litter is seen over a large area, 

► 0.25–0.5 parts/m2—moderate—a few pieces of litter can be detected, 

► 0.5–1 parts/m2—dirty—a lot of waste on the shore, 

► More than 1 part/m2—extremely dirty—most of the shore is covered with plastic debris. 

Bravo et al. (2009) randomly selected beaches along the Chilean coast. These authors used 
densities per square meter as a pollution indicator and found plastic items and cigarette butts to 
be the most abundant beach litter items. Most of the sites surveyed so far were sandy beaches, 
but some of them were pebble beaches; rocky shores were not surveyed. Several transects are 
surveyed. These transects are perpendicular to the coastline, i.e. from the low tide line (low 

https://www.mcsuk.org/ospar/
https://cran.r-project.org/
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station) to the base of dunes (high station). On each transect, a minimum of two stations are 
surveyed (between two and six stations, depending on the width of the beach). Each station 
covers an area of 3 m x 3 m, which is delimited by ropes or measuring tape. All types of beach 
litter within these 9 m² are counted and classified. In Bravo et al. (2009), no information on the 
categorization of litter is given. Amounts of beach litter are given as densities [m-2].  

Similar to the OSPAR method (2010), in Cheshire et al. (2009), beach selection is made 
according to criteria such as accessibility, beach cleaning activities and neighbourhood to 
potential sources. The basic sampling unit for beach litter surveys is a fixed section (length) of 
beach. Survey teams re-survey the same sampling units over an extended period of time (e.g. 
every three months for a period of five or more years). Sampling units of 100 – 1000 m are 
recommended. Smaller sampling sub-units may also be employed for ubiquitous items such as 
cigarette butts but these do not form part of the standard methodology. These sub-units should 
be 10 m wide strips from the water line to the back of the beach. The minimum sampling 
frequency should be annually. Ideally, it is recommended that locations are surveyed every three 
months. Cheshire et al. (2009) recommend using flux rates (i.e. net deposition rates [d-1 m-2]) of 
77 litter types as a measure of pollution rather than their abundance.  

The method of Opfer et al. (2012) relies on a random selection of beach transects and 
distinguishes a total of 43 litter types. This method requires several criteria for beach selection, 
such as substrate, accessibility, minimum length, and cleaning activities. Opfer et al. (2012) 
distinguish between accumulation surveys and standing stock surveys. For accumulation 
surveys, it is recommended making the survey during low tide. To cover the entire site from 
water’s edge to the back of the shoreline, surveyors should traverse the survey area parallel or 
perpendicular to the water. Surveyors should traverse the survey area in a pre-determined 
walking pattern until the entire site is cleaned of marine debris. Litter density counts consider 
items that measure over 2.5 cm in the longest dimension. For standing stock surveys, it is 
prescribed to divide sections of 100 m length into 5 m segments. There should be 20 of them. 
Each 5 m segment should run from the water’s edge to the back of the shoreline. Among the 20 
transects, four are randomly chosen for field surveys. For standing stock surveys, litter is not 
removed from the beach.  

The most detailed guidelines and categorizations of beach litter monitoring are given in OSPAR 
(2010). Since 2001, on 129 beach sections of 100 m, bordering on the North Sea and the North-
East Atlantic, beach litter surveys have been carried out in regular time intervals of three 
months, applying a category list of 121 litter types. Part of the huge OSPAR beach litter database 
was statistically analysed by Schulz et al. (2013, 2015a, 2015b, 2017, 2019). These authors made 
a first proposal for an evaluation system, based on both abundances and trends of beach litter 
types and general categories. In the OSPAR Intersessional Correspondence Group Marine Litter 
(ICG ML), discussion on an appropriate assessment method led to the method described by 
Schulz et al. (2017, 2019) as standard for the OSPAR beach litter database. 

In detail, OSPAR beach litter surveys are performed as follows, with beaches included in the 
monitoring programme selected according to the criteria listed below: 

► composed of sand or gravel and exposed to the open sea, 

► accessible to surveyors all year round, 

► accessible for ease of marine litter removal, 

► a minimum length of 100 meters and if possible, over 1 km in length, 

► free of ‘buildings’ all year round, 
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► ideally not subject to any other litter collection activities. 

Note that in arctic regions, the accessibility of beaches is limited to the summer season. Ideally, 
surveys are carried out at intervals of about three months in winter (mid-December–mid-
January), spring (April), summer (mid-June–mid-July), and autumn (mid-September–mid-
October). During surveys, the abundance of macroscopic beach litter (items >2.5 cm in their 
longest dimension) is recorded on standard 100 m sections of beach along the coastline. All litter 
is collected and removed from the monitored section during the survey.  

Data on the amount of litter on a given section of coastline are recorded at the level of litter 
types. Litter types are identifiable pieces of litter such as plastic bottles, Tetrapak containers, 
metal drinks cans, rubber gloves, etc. Each piece of litter is assigned to one of 121 different litter 
types. Moreover, litter types are assigned to different categories according to the material they 
are made of (i.e. plastic/ polystyrene, rubber, cloth/ textile, paper/ cardboard, wood, metal, 
glass, and ceramic/ pottery), or their use (sanitary and medical waste). In addition, each litter 
type is assigned to a given purpose, such as packaging, user item, consumer, and professional.  

Overall, there is no method of beach litter surveys applied worldwide. European countries and 
Greenland apply the OSPAR method, while in the United States the protocol of Opfer et al. (2012) 
is applied. In Canada, the protocol of Cheshire et al. (2009) is used.  

The main advantage of the protocol of Alkalay (2007) is its simplicity, which allows for its 
application within citizen science projects. This also holds for the protocol of Bravo et al. (2009). 
However, the lack of any detailed categorization including information on purpose and source 
makes these two protocols highly disadvantageous. The main advantage of the protocol of Opfer 
et al. (2012) is its subdivision into standing stock surveys and accumulation surveys. However, 
no information is given on the frequency of surveys, and categorizations lacks attribution to 
sources and purposes. Among the five presented protocols, those of Cheshire et al. (2009) and 
OSPAR (2010) have the most detailed categorizations allowing for source assignments of beach 
litter. Moreover, these two protocols include detailed prescriptions of the selections of survey 
sites and frequencies of surveys.  

The project partners agreed on using the OSPAR method (2010), which among the methods 
described above, has the most detailed categorization. The OSPAR method is well standardized, 
and in the recent past, assessment of OSPAR beach litter data has been standardized as well 
(Schulz et al., 2017, 2019). The OSPAR protocol is widely used and has also been adapted by 
other Regional Seas conventions, such as the Baltic Marine Environment Protection Commission 
(Helsinki Commission, HELCOM) and the Barcelona Convention. Within the EU, further 
refinement of beach litter categorization to a joint category list is based on the OSPAR 
categorization. Finally, the OSPAR protocol has been applied on Greenland and Svalbard in the 
recent past. Thus, results of the envisaged surveys are comparable to historical data from these 
islands. Table 1 gives a comparative overview of existing methods of beach litter monitoring. 
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Table 1: Overview of existing protocols of beach litter monitoring. 

Method Selection of 
beaches 

Categorisation Measured 
parameter 

Data assessment 

Alkalay et al. 
(2007) 

No information 
given 

Plastics and non-
plastics 

Density per square 
meter 

Beach pollution 
index 

Bravo et al. (2009) randomly Simple 
categorization 

Densities per 
square meter 

- 

Cheshire et al. 
(2009) 

Stratified random 
selection of 
beaches 

77 categories Net deposition 
rates 

- 

Opfer et al., (2012) Stratified random 
selection of 
transects 

43 categories Abundance - 

OSPAR (2010) Stratified random 
selection of beach 
sections 

121 single 
categories, 8 
material categories 
and further 
categories of 
purpose and use 

Abundance Schulz et al. (2017, 
2019) 

 

2.1.2.2 Identification of hot spots of beach litter on Greenland and Svalbard 

Between 2016 and 2019, on 17 OSPAR beaches on Greenland, mean total abundances of beach 
litter ranged from one item in remote areas at the eastern coast to more than 800 items at the 
beach of Upernavik, located at the western coast (Figure 1, Figure 2, A.1). In the same period on 
the two OSPAR beaches on Svalbard, mean total abundances of beach litter were less variable 
than on Greenland and were in the order of magnitude of approximately 200 items on a 100 m-
long beach section.  

On Svalbard, total abundances of beach litter, surveyed by Weslawski and Kotwicki (2018), are 
given in [items ha-1] and were as low as eleven items ha-1 at maximum (Figure 3). Amounts of 
beach litter taken from Bergmann et al. (2017) range from nine to 524 g m2 (Figure 3). The 
different dimensions of amounts of beach litter significantly impede any comparison between 
datasets. Standardisations of amounts of beach litter could only be made for each dataset 
separately (Figure 3). However, amounts of beach litter tended to be higher at the northern 
coast than on the western coast of Svalbard. No information is given on amounts of beach litter 
in the southern and eastern part of Svalbard. Therefore, interpretations of beach litter data have 
to be made cautiously. 

In general, amounts of beach litter were high on sections of beaches highly exposed to easterly 
wind and currents (Figure 3, Bergmann et al., 2017). In contrast, amounts of beach litter were 
low on coastlines sheltered from easterly wind and currents at the western coast (Weslawski 
and Kotwicki, 2018). This is in line with other studies on marine litter in the Arctic (Bergmann et 
al., 2017; Buhl-Mortensen and Buhl-Mortensen, 2017; Tekmann et al., 2017). However, 
according to the vicinity to potential sea-based sources, amounts of beach litter are supposed to 
be high at the southern coast of Svalbard. This could not be shown, because of lacking beach 
litter data. 
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Figure 1: Box-Whisker-Plots of total abundances of beach litter on Greenland, Iceland, and 
Svalbard 

 
Acronyms on the x-axis are OSPAR beach IDs (GRL = Greenland, IS = Iceland, NO = Norway -here Svalbard). In the boxes, 
horizontal lines mark the three quartiles, error bars give standard deviations, and empty circles show outlying values. The 
diagram was created with the open source software R (https://cran.r-project.org). Beaches with too low numbers of 
surveys (i.e. <4) were omitted from the boxplot. Source: Compiled by AE 

 

Figure 2: Locations of beach litter surveys, harbours, settlements, and meteorological 
stations on Greenland 

 
Easting and Northing are UTM coordinates. The size of bars at monitoring locations of beach litter corresponds to the mean 
total abundance of beach litter, standardized to values from 10 to 20. Source: Compiled by AE 

 

https://cran.r-project.org/
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Figure 3: Locations of beach litter surveys, harbours, and meteorological stations on 
Svalbard. 

 
Easting and Northing are UTM coordinates. The size of bars at monitoring locations of beach litter corresponds to the mean 
total amount of beach litter, standardized to values from 10 to 20. Source: Compiled by AE 

2.2 Remote sensing-based beach litter monitoring 

2.2.1 Methods 

BCSH has conducted a literature study targeted at summarizing and comparing distinct remote 
sensing techniques for the detection of plastic litter on Arctic beaches. The main objective was 
the development of a large-scale application for Arctic-wide consistent and comparable data 
acquisition. The developed methodology should be evaluated in terms of cost efficiency, 
accessibility limitations and data quality. BCSH distinguished between three major acquisition 
platforms: satellite, aircraft, and drone (UAVs). State of the art application areas for each 
approach were summarized, and spectral and spatial resolution, area coverage, acquisition 
limitations and costs were compared (Table 2). Published studies applying these methods in 
litter detection were also examined. As the number of studies applying remote sensing 
techniques for beach litter detection is still limited, studies focussing on marine floating plastics 
were also included.  

The literature study was conducted through a detailed reference search of recent publications, 
with the online portal Litterbase from the Alfred Wegener Institute of Polar and Marine 
Research (AWI) serving as a starting point. Litterbase is an online portal for marine litter, which 
has summarized results from 2044 scientific studies. A second source of information used was 
the PAME Desktop study on Marine Litter form 2019 (PAME 2019). In addition, discussions with 
leading scientists (e.g. Dr. Melanie Bergmann, Tomás Acuña Ruz) on the subject of marine plastic 
litter were conducted. 

2.2.2 Introduction to Remote Sensing 

For a better understanding of the investigated methods, a short introduction detailing the 
electromagnetic spectrum and the applied terminology of remote sensing platforms is given 
below. 
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2.2.2.1 Electromagnetic spectrum 

The electromagnetic spectrum (EMS) is the range of frequencies of all types of electromagnetic 
radiation from Gamma-rays (<0.01 nm) to Radio waves (>30 cm), typically characterized by 
their respective wavelengths (Campbell et al. 2011). In remote sensing, most sensors operate 
within the visible spectrum (VIS) (380 – 780 nm), Infrared (IR) (780 nm – 0.1 mm; including 
near Infrared (NIR): 780 nm to 1400 nm and shortwave Infrared (SWIR) :1.4 to 3 μm) and 
microwave (0.1 mm – 1 m). Gamma rays, X- rays, ultraviolet, most IR and long-wavelength radio 
waves are blocked or absorbed by the atmosphere and are therefore not used by passive remote 
sensing sensors (Figure 4). 

Figure 4: Electromagnetic spectrum 

 
Atmospheric electromagnetic transmittance and opacity. Source: NASA 

2.2.2.2 Active and Passive sensors 

The properties of the EMS are used by different kinds of sensors, generally divided into active 
and passive. Active sensors transmit an electromagnetic pulse and measure the reflected or 
scattered signal. Passive sensors measure the natural emissions of the Earth's surface and the 
atmosphere depending on their spectral resolution and coverage (Erdle et al. 2011). As all earth 
surface materials absorb incident sunlight differently according to wavelength, the detected 
reflectance signal is characteristic of each material and can be used as a determinant of 
classification approaches (Richards 1999). 

2.2.2.3 Spectral resolution and coverage 

The spectral resolution of a sensor describes the width of the spectral bands and therefore 
displays its capacity to resolve features in the EMS. As an example, the MicaSense Altum has a 
spectral resolution of 10 nm for the green, red and redEdge band, 20 nm for the blue band and 
40 nm for the NIR band (MicaSense Inc 2020). 
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The spectral coverage describes the area of the EMS covered by the spectral bands of a sensor. 
The spectral coverage of a sensor can vary between multispectral (generally 2 - 10 bands: e.g. 
RGB with the three bands for red, green, and blue) and hyperspectral sensors (100 - 1000 
spectral bands) (Pettorelli, 2019). 

2.2.2.4 Spatial resolution and area coverage 

The spatial resolution describes the pixel size of the imagery acquired by a remote sensing 
sensor. The pixel size of satellite platforms is fixed for its single bands but can vary for airborne 
or UAV acquisitions depending on the flight altitude (Richards 1999). Single values of the spatial 
resolution indicate the same value along and across track. In the case of a difference along and 
across track, two values are given. The area coverage refers to the image area covered by a 
sensor and discriminates between small and large-scale acquisitions. 

2.2.2.5 Spectral signature 

The reflected radiation of a surface material is a function of wavelength and is called the spectral 
signature. The spectral signature is characteristic of different materials and can be used for 
classification approaches (Richards 1999). Figure 5 shows an example for the spectral signature 
of plastics.  

Figure 5: Electromagnetic spectrum of plastic 

 
Example of a reflectance spectrum of plastic litter with the four characteristic absorption areas marked in grey  
Source: Garaba et al. 2020 licensed under CC BY 4.0 

  

https://creativecommons.org/licenses/by/4.0/
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2.2.3 Results and Discussion 

2.2.3.1 Review of satellite imagery for plastic litter detection 

Satellite platforms permit acquisition of large areas with spatial resolutions down to a few 
decimetres and with a wide range of sensors. Maximenko et al. (2019) describes potential 
applications for the detection of marine plastic litter for active and passive sensors. Radar 
Sensors (active sensors) allow for a description of the dynamics of a floating object as drift 
velocity or the generated wake. This applies particularly to floating plastics. Radar sensors can 
operate down to sub-metre spatial resolution. Passive sensors can be used for RGB composites 
to detect plastic litter and can potentially identify the particular type by giving information on 
colour and shape of the detected litter. A key requirement is a high spatial resolution 
(Maximenko et al. 2019). Satellite platforms with passive sensors cover a wide range of spatial 
resolution from sub-metre for the panchromatic band (e.g. WorldView-3 (WV3), QuickBird) to a 
few metres (WV3: 1.24 m; Skysat: 2 m; QuickBird: 2.4 m), several tenths of metre (Landsat 7/8: 
30 m); Sentinel-2A/2B: 10 - 20 m) and hundreds of metres (MODIS: 250 - 1000 m) in the 
multispectral bands. Next to the spatial resolution, important characteristics are the spectral 
resolution and the spectral coverage of the sensor and the revisit time of the platform. 

To date only a handful of studies have been published using satellite imagery for the detection of 
plastic litter on beaches or in the sea. Topouzelis et al. (2019) and Biermann et al. (2020) 
examined the potential of Sentinel-2 imagery to detect floating plastics. Topouzelis et al. (2019) 
used three 100 m² artificial floating plastic targets consisting of PET-1 1.5 l water bottles, LDPE 
plastic bags and nylon fishing ghost nets to demonstrate their discrimination capability from 
natural sea-water. Biermann et al. (2020) successfully classified floating plastics on sub-pixel 
scale with an accuracy up to 86% developing the Normalized Difference Vegetation Index 
(NDVI) and a Floating Debris Index (FDI). The authors detected spectral characteristics of plastic 
in pixel filled by at least 30% of bottles or bags or by 50% of fishing nets. Both studies take 
advantage of the characteristic spectral response of seawater being the main background signal, 
even though Biermann et al. (2020) also describes a discrimination between plastics and 
seaweed, spume, and timber (Figure 6). The main restriction of Sentinel-2 data for beach litter 
detection remains its spatial resolution of 10 - 20 m. Even by assuming a detectability at a sub-
pixel scale of 30%, plastic patches of 30 - 120 m² would be required. 

The only study applying satellite imagery to beach litter so far was conducted by Acuña-Ruz et 
al. (2018), using WV3 imagery for the detection of plastic litter on beaches of Chiloé, Chile. The 
authors applied a semi-automatic approach of land use classification on a pixel level using the 
spectral data acquired by WV3. Litter objects or patches of litter with a minimum size of 1 m² 
could be detected with an overall classification accuracy up to 88%. 
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Figure 6: Classification of floating materials using NDVI and FDI 

Known floating materials in the environment. Discrimination using NDVI alone (a), FDI (b) and a combination of NDVI and 
FDI (c). The combination of NDVI and FDI reflects distinct clustering of materials but also NDVI alone shows great potential 
for the discrimination of plastics. Source: Biermann et al. 2020 licensed under CC BY 4.0 

On April 1, 2022, the hyperspectral satellite mission EnMAP (Environmental Mapping and 
Analysis Program) by DLR (Deutsche Zentrum für Luft- und Raumfahrt e. V.) was launched. 
EnMAP provides a broad spectral coverage within the visible near-Infrared (VNIR) 
420 - 1000 nm and the SWIR 900 - 2450 nm. The spatial resolution is 30 m. An overview of 
sensors already used for detection of plastic debris was given by Maximenko et al. (2019). The 
authors summarize the platforms used and the respective spatial and spectral resolutions 
(Figure 7). 

Satellite imagery shows high potential for plastic beach litter detection on Arctic beaches due to 
its area coverage and spectral resolution, facilitating data acquisition in remote areas and 
permitting the detection of spectral characteristics of plastics as demonstrated in various 
studies (Topouzelis et al. 2019, Biermann et al. 2020, Acuña-Ruz et al. 2018 and Maximenko et 
al. 2019). The main limitation of satellite acquisition is still the relatively coarse spatial 
resolution of multispectral imagery starting from 1 m upwards, as well as the potential costs for 
large-scale applications. Even though most high-resolution satellite data (>10 m) are accessible 
without costs (e.g. Sentinel-2, Landsat 7/8), the acquisition of very high-resolution data are still 
liable to costs (e.g. WV3: around 3,300 €/100 km²). A further challenge, particularly in the 
Arctic, is the high cloud coverage which requires a broad acquisition timeframe and high revisit 
time. Similar problems with cloud coverage were described by Acuña-Ruz et al. (2018) for 
acquisitions in Chiloé, Chile. 

We considered satellite data from WV3 to be the most suitable for the application on beach litter 
surveys due to their spatial resolution and the spectral properties of its sensors that are ideally 
located to identify the characteristic absorption bands of plastic (Figure 5, Figure 8). 

https://creativecommons.org/licenses/by/4.0/
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Figure 7: Overview of sensors used for detection of plastic litter 

Source: Maximenko et al. (2019) licensed under CC BY 4.0 

2.2.3.2 Review of aircraft-based surveys for plastic litter detection 

Airborne-based digital surveys for litter detection over both oceanic and coastal environments 
were conducted in several studies (Garaba et al. 2018, Garaba et al. 2018b, Moy et al. 2018, 
Pichel et al. 2012 and Garcia-Garin et al. 2019). For RGB imagery, a spatial resolution of a few 
centimetres could be reached (Garcin-Garin et al. 2019, Moy et al. 2018). Typical flight altitudes 
for airborne-based acquisition vary between 250 m and 650 m, resulting in different spatial 
resolutions (Garaba et al. 2018, Moy et al. 2018, Pichel et al. 2012, Garcia-Garin et al. 2019). 
Garaba et al. (2018b) combined RGB-acquisitions with NIR and SWIR imagery. In a visual 
analysis, objects with a size of ten times the spatial resolution could be identified (Garaba et al. 
2018b, Moy et al. 2018, Garcia-Garin et al. 2019). Spectral analysis was applied for semi-
automatic detections. Garaba et al. (2018b) describe a theoretic detectability on sub-pixel level 
over the ocean, using hyperspectral imagery. Objects filling 5% of a certain pixel should be 
detectable. Garaba et al. 2018b applied the hyperspectral ITRES SASI-600 imager with 100 
wavebands between 950 nm and 2,450 nm and a spatial resolution of 0.5 m across 1.2 m along 
the track. Assuming a detectability of plastic litter covering down to 5% of a certain pixel, results 
in a possible detection of plastic items with a size around 0.025 m across 0.06 m. In a second 
study, Garaba et al. (2018) acquired Hyperspectral data from AVIRIS (Airborne Visible/ Infrared 
Imaging Spectrometer) with 224 contiguous spectral bands with a coverage between 
400 - 2,500 nm. A spatial resolution of 7.1 m was reached, resulting in a potential detection of 
objects of around 2.5 m², assuming a detectability at sub-pixel scale of 5% of a pixel (Garaba et 
al. 2018). 

The studies cited above highlight a great potential of airborne-based acquisitions in the 
detection of plastic litter. The higher spatial resolution compared to satellite platforms permit 
optical detection of macroplastics at RGB-composites with items roughly ten times the spatial 
resolution (Garaba et al. 2018, Moy et al. 2018, Pichel et al. 2012, Garcia-Garin et al. 2019). 
Spectral analysis furthermore permits semi-automatic classification approaches that make use 
of the spectral characteristics of plastics in the NIR and SWIR spectrum. Classification of plastic 
litter covering down to 5% of a pixel seems to be possible over open water (Garaba et al. 2018, 
Garaba et al 2018b), although a sub-pixel detection over beaches has not been tested yet. The 
spatial resolution of hyperspectral images from airborne systems can go down to a sub-metre 
scale, whereas the planned hyperspectral satellite mission EnMAP only reaches a resolution of 
tenths of metres (30 m). The main limitation of airborne-based acquisition is its relatively high 
cost, especially for an Arctic-wide acquisition. A simplified and basic expenditure breakdown 
will include instrument running costs, aircraft/ fuel overheads and personnel and living 

https://creativecommons.org/licenses/by/4.0/
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expenses. Coulter et al. (2007) describes the costs of aerial hyperspectral surveys for moderate 
relief, clear skies, and good infrastructure in many areas in North America to be around 
$ 100/Line km. In contrast, the costs of surveys with high relief, unpredictable weather 
conditions and poor infrastructure rise to $ 150/Line km. Coulter et al. (2007) describes a Line 
km to cover around 1 km² for a spatial resolution of 3 m. The given costs assume a large survey 
area of at least 1,000 km²; smaller surveys result in a significant increase in Line km costs. In 
addition to this, the costs for mobilization and demobilization are not included. Operational 
limitations due to cloud coverage below the flight altitude can often result in a significant 
amount of standby days. Mobilization and demobilization costs can vary significantly depending 
on survey area, flight planning, permits, insurance, custom bonds, personnel transportation, and 
logistics. Moreover, the cost estimation in question was conducted for 2007 and can therefore 
vary with any change due to variable fuel costs (Coulter et al. 2007). BCSH has several years of 
experience in aerial surveys in North Sea and Baltic Sea, and assumes a possible coverage of 
around 800 km of coastline per day at a flight altitude of 550 m. This value is a rough estimation 
of the possible coverage and is highly dependent on coastal characteristics. 

2.2.3.3 Review of UAV based surveys for plastic litter detection 

UAVs permit the lowest flight altitudes of the three platforms and therefore the highest spatial 
resolution, even though airborne-based sensors can come close. The integration of different 
sensors to an UAV is defined by the sensor size as well as by the UAVs maximum take-off weight 
(MTOW). The MTOW varies by the size and engine of the UAVs and influences the maximum 
flight area that can be covered. RGB sensors usually reach a spatial resolution of several 
centimetres but can go down to sub-centimetre (Martin et al. 2018). Multispectral sensors can 
reach a GSD of several centimetres (e.g. MicaSense Altum, Parrot Sequia +). Both multispectral 
and RGB cameras can be mounted on UAVs with a MTOW up to 5 kg. Hyperspectral sensors on 
UAVs can have a spectral coverage from VNIR to SWIR but are very expensive (e.g. Micro-
Hyperspec).  

Martin et al. (2018) und Bao et al. (2018) successfully applied semi-automatic classification of 
plastic litter using UAV RGB imagery. Bao et al. (2018) applied image segmentation thresholding 
for a successful classification with an overall accuracy of 98.6%. This classification was 
performed over uniform sandy beaches. However, the authors point out a potential 
overestimation of plastic litter with their approach; it seems to have easily misclassified natural 
items such as shells, branches and leaves as plastic litter. Martin et al. (2018) applied a visual 
census as well as a machine learning approach. For the machine learning approach, a random 
forest classifier was used, employing a histogram of orientated gradients (HoG) descriptor. 
Random forest is an ensemble learning method often applied in land use/ cover classification. 
HoG is a widely utilized feature representation method used for example in human face 
detection (Dalal & Triggs 2005). Martin et al. (2018) described a significant positive correlation 
between items abundance found with the visual census and random forest (Spearman 
correlation, r=0.61, p=0.026, n=13) which showed that images with a higher number of plastic 
items lead to higher number of detected items by the random forest algorithm. However, the 
authors also described an overestimation of plastic items using the machine learning algorithms 
by a factor of five, as well as missed detections. Both studies clearly showed eligibility of UAVs 
for automatic detection of plastic beach litter using. It is worth noting that the study areas in 
both cases were uniform sandy beaches, therefore the possibility to transfer these methods to 
gravel beaches has not been tested yet. Finally, Martin et al. (2018) also compared the time for a 
UAV survey to the time needed to conduct a traditional beach survey. The authors described the 
UAV approach as being thirty-nine times faster. UAVs permit high resolution data with multi and 
hyperspectral coverage. They can monitor beaches with high time efficiency and are eligible for 
(semi-) automatic classification. Promising studies used RGB imagery for successful automatic 
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detection on sandy beaches, although a successful transfer to gravel beaches must still be 
investigated. Moreover, the application of multi or hyperspectral data has to be tested. Some of 
the main limitations of this method are the accessibility of remote areas as well as the costs 
arising from applications of hyperspectral sensors. The main climatic limitations for 
consideration are rain or strong wind speeds (above 30 km/h); due to their low flight altitude 
UAVs are less likely to be affected by clouds. 

2.2.3.4 Ongoing literature research 

Literature research was an ongoing process during the project with a high number of studies 
published within this period. Recent publications focused on drone-based beach litter detection 
using high resolution RGB cameras (e.g. Andriolo et al., 2020; Gonçalves et al., 2020a and 2020b; 
Escobar Sánchez et al., 2021; Martin et al., 2021; Merlino et al., 2020; Papakonstantinou et al., 
2021). The GSD used varied between 0.18 cm (Merlino et al., 2020) and 1.2 cm (Andriolo et al., 
2020) covering areas between <1 ha and 5 ha (Papakonstantinou et al., 2021). Only Martin et al. 
(2021) applied a large-scale application covering a much larger area by monitoring a total of 44 
beaches along the Saudi Arabian coast with a linear distance of 1400 km. To achieve very low 
GSD low flight altitudes (down to 6 m) were necessary and the acquisition of transects of 100 m 
beach lengths could take up to half an hour flight time. 

Various classification approaches were tested and compared with in-situ OSPAR monitoring. 
Classification approaches were manual screening of drone footage, pixel- and object-based 
(semi-) automatic classifications using machine learning algorithms (e.g. Random Forest, 
Support Vector machine, Maximum Likelihood Classifier) and Convolutional Neural Networks. 

Marine litter was identified by manual screening with detection rates between 20% (Merlino et 
al., 2020 (GSD = 0.18 cm)) and up to almost 100% (Andriolo et al., 2020 (GSD = 1.2 cm); Escobar 
Sánchez et al., 2021 (GSD = 0.27 cm); Gonçalves et al., 2020b (GSD = 0.55 cm)).  

The detection success applying (semi-) automatic classification approaches to detect beach litter 
varied among different studies between 25% - 74% (Escobar Sánchez et al., 2021), 64% - 73% 
(Gonçalves et al., 2020), 62% - 82% (Martin et al. 2021) and 77.26% (Papakonstantinou et al., 
2021). 

For further investigations the application of multispectral sensors was discussed and suggested 
in several studies (Gonçalves et al., 2020a und 2020c; Escobar Sánchez et al., 2021; Wolf et al., 
2020). 

2.2.3.5 Classification methods 

In addition to the literature review of the three remote sensing platforms, a focus was also 
placed on the applicability of (semi-) automatic classification methods. Therefore, the 
classification methods that are applied on the abovementioned platforms were evaluated in 
terms of an Arctic-wide application. The most common approaches have been image recognition 
tools and imaging spectroscopy (e.g. Acuña-Ruz et al. (2018), Biermann et al. 2020, Garaba et al. 
2018, Martin et al. 2018). Martin et al. (2018) applied image recognition tools on very high 
resolution drone data. Imaging spectroscopy for beach litter detection was applied by Acuña-
Ruz et al. (2018). Imaging spectroscopy describes the measurement, analysis and interpretation 
of electro-optical spectra acquired over large areas. It permits the classification of remote 
sensing imagery on a pixel level by using spectral characteristics of the occurring land cover 
(Shaw and Burke 2003). For a large-scale application as in the Arctic, a pixel-based classification 
of satellite data is of high interest. Therefore, publications about reflection spectrum of plastic 
litter were further investigated. Garaba et al. (2020) present a continuous spectrum of plastic 
litter in the RGB, NIR and SWIR spectra. Various wavelength ranges were identified that are 
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characteristic for the presence of plastics. Those are around 931 nm, 1215 nm, 1417 nm, and 
1732 nm and thus in the range between NIR and SWIR (Figure 8). Sensors that cover these wave 
ranges are particularly well-suited for (semi-) automatic detection of plastic litter as they 
promise a potential discrimination from the surrounding materials. 

2.2.4 Conclusion 

An overview of the spectral and spatial resolution, spectral and area coverage, acquisition 
limitations and costs of the three platforms is presented in Table 2. As the single characteristics 
should not be evaluated in the same way and each method has its own advantages and 
limitations, the application of a ranking is quite subjective and was therefore not applied. The 
literature study emphasizes that any of the three platforms can give a satisfying solution on its 
own. Maximenko et al. (2019) suggests therefore an integration of several observing systems for 
the detection of marine debris.  

Table 2: Comparison of remote sensing platforms for an Arctic-wide beach litter monitoring 

 Satellite (WorldView 3) Airborne UAV 

Spectral coverage RGB. NIR, SWIR RGB, NIR, SWIR RGB, NIR, (SWIR) 

Spatial Resolution 0.31 m/ 1.24 m/ 3.7 m Centimetre to metre Sub-centimetre 

Area Coverage Large-scale Medium-scale Small-scale 

Flight altitude 617 km 250 m to 650 m 10 m to 100 m 

Detectable litter size optical: >3 m 
spectral: 1.24 m (pixel-level) 

Optical: >10/ 20 cm 
Spectral: >5% of a pixel 
over sea 

Optical: >10 cm 
Spectral: pixel-level 

Costs for Arctic-wide 
monitoring 

Medium High Very high 

Limitation Relative Coarse Resolution, 
cloud coverage 

High costs in general and 
very high costs for small 
areas, cloud coverage 

Small scale, Accessibility of 
remote areas, wind, high 
costs for SWIR sensors 

Comparison of spectral and spatial resolution, area coverage, acquisition limitations and costs. WorldView 3 was chosen as 
an example for a potential satellite platform because of its high spatial resolution compared to other satellite systems. 

BCSH agrees with the idea of an integrated approach and suggests a combination of two 
platforms, namely satellite and UAV, for Arctic-wide beach litter detection. As the main 
limitation of satellite platforms is the relatively coarse spatial resolution, BCSH suggests a 
combination with very high-resolution UAV imagery. The advantages of both platforms can then 
be combined to create some very promising survey characteristics. Multispectral satellite 
imagery permits the investigation of pixel-based classification approaches as conducted by 
Acuña-Ruz et al. (2018), making use of the characteristic plastic reflectance spectrum (Figure 8). 
At present, the relatively coarse spatial resolution is limiting the detection of single pieces of 
beach litter but has great potential for an Arctic-wide identification of hotspots of beach litter 
accumulation. Identified hotspots can be further investigated using UAV imagery. UAVs permit a 
time-efficient acquisition on a centimetre scale at low costs and can complement traditional 
beach litter surveys. Anyhow, an Arctic-wide application of drone imagery is not feasible 
because of costs and difficult accessibility. UAV imagery furthermore permits the evaluation of 
different spatial resolutions for plastic litter detection, acquired by different flight altitudes or 
down sampling. Therefore, UAVs can offer an outlook for future satellite missions, overcoming 
the restrictions of spatial resolution. The main limitation of UAVs is the low spectral coverage for 
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the low to middle price sector and the low area coverage, both being compensated by satellite 
imagery.  

Figure 8: Example reflectance spectrum of plastic litter 

 
Example of a reflectance spectrum of plastic litter given by Garaba et al. (2020) with the four characteristic absorption areas 
marked in grey. WV3 and MicaSense Altum spectral bands are added to indicate their overlap with the characteristic plastic 
features. WV3 bands are above the red line, MicaSense Altum bands below.  
Source: Adjusted from Garaba et al. 2020 licensed under CC BY 4.0 

For this study, BCSH suggests the application of WorldView3 (WV3) satellite imagery. WV3 
combines very high spatial resolution (1.24 m for VIR and 3.7 m for SWIR) with multispectral 
coverage and has already been applied successfully for beach litter detection (Acuña-Ruz et al. 
2018). Its panchromatic band (0.31 m) can be used for pan-sharpening of the RGB, resulting in a 
colour image of 0.31 m resolution which in turn enables a visual identification of large plastic 
litter items. The multispectral bands can furthermore be used for (semi-) automatic 
classification approaches. As a UAV sensor, BCSH recommends the MicaSense Altum. The 
MicaSense Altum consists of five individual sensors in the VIR (RGB, redEdge and NIR) with a 
spatial resolution of 3.4 cm at a flight altitude of 80 m. Aside from the promising studies of 
airborne-based systems with high spatial and spectral resolutions, the large costs could make 
airborne-based acquisitions unattractive for an Arctic-wide application. 

https://creativecommons.org/licenses/by/4.0/
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3 Work package 2 

3.1 Statistical analysis to identify enrichments of beach litter  

3.1.1 Methods 

Sources of beach litter can roughly be subdivided into land-based sources and sea-based 
sources. The latter comprise fishing, shipping, offshore mining activities, and wind power 
installations, while the former include tourism, uncontrolled emissions from landfills, harbours, 
and input via tributaries (i.e. rivers and estuaries). Attribution of beach litter types to sources 
has been attempted by Tudor and Williams (2004), who invented the matrix score technique. 
However, except for fishing-related items, source attribution is highly uncertain, partly, because 
many litter types may originate from several sources.  

Rivers are assumed to substantially emit litter to marine waters (Gasperi et al., 2014; Rech et al., 
2014), but until present, the quantifications of source terms is uncertain (Morritt et al., 2014), 
because empirical studies partly neglect the high temporal variability of discharge at the rivers’ 
mouths, and model studies mainly rely on generic parameterizations and suffer from lack of 
information on boundary conditions. 

Information on riverine input of litter in the Arctic is subject to speculations, while Bergmann et 
al. (2017), Kirkfeldt (2016), and Nashoug (2016) mainly assign beach litter on Svalbard and 
Greenland, respectively, to sea-based sources, and among these mainly to fishing. Kirkfeldt 
(2016) discusses landfills as potential sources of beach litter on Greenland. Even scientific field 
studies have been suspected to contribute to pollution with litter (Nashoug, 2016). The lack of 
information of litter emissions to the Arctic requires acquisition of data on potential drivers of 
beach litter in the Arctic. 

Therefore, AE listed up data requirements, necessary for the identification of enrichments of 
beach litter on Greenland and Svalbard. These demands include geo-referenced data on 
settlements, harbours, landfills, currents, and wind, the latter two of which can explain the 
beaching of litter from sea-based sources. Information on landfills and incineration plants on 
Greenland was depicted from Eisted and Christensen (2011). Data on settlements, harbours, 
landfills and mining activities on Greenland were provided by OA and are visualized in B.1 and 
B.2. 

The following data were acquired from the web by AE:  

► Wind data of Svalbard (https://www.unis.no/resources/weather-stations/), 

► Wind data of Greenland (https://www.promice.org/PromiceDataPortal/), 

► Data on currents and Lagrangian transport deriving from a model of computational fluid 
dynamics (CFD) of the waters around Svalbard (Hattermann et al., 2016; 
https://data.npolar.no/home/), 

► Topographical data (shape files) of Greenland given in 1:1.000.000 
(https://eurogeographics.org/), 

► Topographical data (shape files) of Svalbard given in 1:100.000 
(https://data.npolar.no/home/), 

► Coordinates of harbours on Greenland (http://capetotrade.com/getportlist.php?ref1=GL),  

https://www.unis.no/resources/weather-stations/
https://www.promice.org/PromiceDataPortal/
https://data.npolar.no/home/
https://eurogeographics.org/
https://data.npolar.no/home/
http://capetotrade.com/getportlist.php?ref1=GL
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► Coordinates of harbours on Svalbard (http://ports.com/browse/europe/svalbard-and-jan-
mayen/). 

AE geo-referenced the data and created shape files from positions of meteorological stations, 
harbours, and settlements (Figure 2,Figure 3). The latter data were provided by BCSH. 
Moreover, wind data were analysed and illustrated using the R routine CLIFRO (https://cran.r-
project.org/web/packages/clifro/index.html).  

ASTD data on shipping and fishing activities in the Arctic were provided by the PAME 
International Secretariat. These data were aggregated to total occurrences (= abundances) of 
fishing vessels, passenger ships, and other ships in the waters of West Greenland (i.e. west of -
44.0° longitude) and East Greenland (i.e. east of -44.0° longitude), respectively. 

Finally, statistical analyses were carried out to identify drivers of beach litter abundances on 
Greenland. In detail, a permutational analysis of covariance (PERMANCOVA) was calculated with 
mean abundances of fishing vessels [counts] as factor, and numbers of inhabitants [counts], 
distance to next settlement [km], distance to next harbour [km], and overnight stays in the 
respective district of Greenland [counts] as covariates. Mean total abundances of beach litter 
[counts] on Greenland, taken from the OSPAR beach litter database, were used as dependent 
variable. Abundances of passenger ships and other ships were excluded as factors, to avoid over-
parameterization and redundancy of information of the statistical model. Information on wind 
could not be directly linked to surveyed beach locations, because the distances between OSPAR 
beaches and the closest meteorological stations partly amounted to several hundred kilometres. 
Therefore, wind data were excluded from the statistical model, as well, and the interpretations 
of wind data was qualitatively rather than quantitatively. Additional tests for autocorrelation, 
normality, and homogeneity of variance were calculated to ensure that the results of the 
PERMANCOVA were not biased. The statistical software Systat 12.0 (Systat Inc.) was used for all 
statistical analyses. 

3.1.2 Results and Discussion 

According to Eisted and Christensen (2011), on Greenland, there are six small- to medium-sized 
incineration plants and 30 straw incineration plants. Nearly every settlement has its own 
landfill, partly household garbage is directly littered onto beaches. Information on the amount 
and composition of garbage on Greenland is rudimentary or completely lacking. An overview on 
the positions of landfills and their respective size is shown in B.2. Apart from inputs from 
shipping and fishing, wind erosion from landfills and direct littering on the beach substantially 
contribute to the amounts of beach litter on Greenland (Kirkfeldt, 2016). 

However, sea-based sources of beach litter are dominating in the Arctic (Bergmann et al., 2017; 
PAME, 2019; Tekmann et al., 2017). Accordingly, wind driven transport leads to accumulation of 
beach litter at location highly exposed to wind (Schulz et al., 2015a). Abundances of beach litter 
are low when the portion of westerly winds is negligible (Figure 9). According to Figure 9,Figure 
10, and Figure 11, at the western coast of Greenland, high portions of wind from the west and 
southwest might lead to accumulations of beach litter. This agrees well with analyses of beach 
litter data in the North Sea, where wind drift has been discussed as the major driving force of the 
beaching of litter (Neumann et al., 2014; Schulz et al., 2015a). Besides, the vicinity to cities, such 
as Nuuk, can be regarded as additional factor, causing enrichments of beach litter (Kirkfeldt, 
2016).  

http://ports.com/browse/europe/svalbard-and-
https://cran.r-project.org/web/packages/clifro/index.html
https://cran.r-project.org/web/packages/clifro/index.html
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Figure 9: Map of Greenland with a wind rose 

 

 
Black lines hint at the position of the respective meteorological station north of Nuuk. Source: Compiled by AE 

Figure 10: Map of Greenland with a wind rose 
 

 
Black lines hint at the position of the respective meteorological station near Nuuk. Source: Compiled by AE 
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Figure 11: Map of Greenland with a wind rose 
 

 
Black lines hint at the position of the respective meteorological station near Upernavik. Source: Compiled by AE 

In addition, the prevailing residual currents partly explain increased abundances of beach litter 
at the western coast of Greenland (Figure 12). Thus, hot spots of beach litter are expected to be 
present at Nuuk, Ilulissat and Upernavik (B.1), which made these sections of coastline 
appropriate as beaches to be surveyed in this project. The observed low abundances of beach 
litter on the western coast of Svalbard (Weslawski and Kotwicki, 2018) agree with the positions 
sheltered from the predominant easterly winds (Figure 13). In the north of Svalbard, high 
amounts of beach litter were found on beach sections exposed to wind and currents (Bergmann 
et al., 2017). Note that for Svalbard, the wind rose given in the figure above is exemplary of a 
number of wind roses generated (i.e. for five locations on Svalbard), which exhibit similar 
patterns of prevailing easterly winds. In contrast to Greenland, information on potential driving 
forces of beach litter was limited on Svalbard. Therefore, here, interpretations of beach litter 
data have to be cautious and confined. 
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Figure 12: Illustration of predominant residual currents in the waters around Greenland 

 
Red arrows reveal warm currents, Blue arrows show cold currents. Source: arktis-reise.de 

Figure 13: Map of Svalbard with a wind rose 
 

 
Black lines hint at the position of the respective meteorological station near Barentsburg.  
Source: Compiled by AE 
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Table 3 shows aggregated data on ship traffic in the waters around Greenland. Abundances of 
shipping differed by one order of magnitude between West and East Greenland. 

Table 3: Aggregated data on shipping in the waters around Greenland, exemplarily given for 
the year 2016. 

Subcategory Region Arithmetic mean 
[abundance] 

Standard deviation 
[abundance] 

All ships Greenland 19,515 4,237 

 East Greenland 744 958 

 West Greenland 18,771 3,579 

Fishing vessels Greenland 7,839 2,097 

 East Greenland 256 149 

 West Greenland 7,583 2,125 

Passenger ships Greenland 941 268 

 East Greenland 62 138 

 West Greenland 878 184 

Other ships Greenland 10,735 2,566 

 East Greenland 425 785 

 West Greenland 10,310 1,977 

 

Table 4 summarizes results of the PERMANCOVA, calculated to identify drivers of beach litter on 
Greenland. While autocorrelation could not be excluded definitely, normality (Kolmogorov-
Smirnov test) and homogeneity of variance (Levene test) were given. Therefore, the model is 
assumed not or barely to be biased. The model fit was good with a measure of determination of 
0.83. Fishing and overnight stays were identified as significant factor and covariate, respectively, 
determining beach litter abundances. This is in line with previous studies on beach litter in the 
Arctic, which highlighted the dominance of sea-based sources of beach litter (Bergmann et al., 
2017; Kirkfeldt, 2016; Tekmann et al., 2017). Overnight stays not necessarily represent the 
impact of tourism. They are high in areas with sufficient infrastructure, where emissions of 
domestic waste via landfills and direct littering are high, as well. In this respect, Strietmann et al. 
(2021) identified domestic waste as dominant portion of beach litter at several locations at the 
western coast of Greenland, while fisheries contributed another major percentage of beach litter. 
This is also in line with results from Mallory et al. (2021) who found that the distance to 
settlements significantly explained beach litter densities at the western coast of Greenland, 
while long-range transport from sea-based sources was assumed to add to high densities of 
beach litter even on remote beaches at high latitudes. In contrast, applying a Lagrangian 
transport model, Strand et al. (2021) supposed that fishery-related litter at beach sites on 
Svalbard stems from local sources (the Barents and Norwegian Seas). Accordingly, Vesman et al. 
(2020) attributed sea-based sources as major contributor to beach litter on the Northern Island 
of the Novaya Zemlya archipelago. 
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Table 4: Results of a permutational analysis of covariance (PERMANCOVA) 

Factor/ covariate t [-] p [-] d [-] 

Fishing vessels 15.196 0.002  

Inhabitants 1.551 0.239  

Distance of settlement 0.573 0.465  

Distance to harbour 0.274 0.611  

Overnight stays 36.823 <0.001  

Test    

Levene test  0.217  

Kolmogorov Smirnov test  0.438  

Dublin-Watson test   1.634 

Results of a permutational analysis of covariance (PERMANCOVA) on driving forces of beach litter abundances on 
Greenland (r² = 0.827, p<0.05, n = 17). 

3.2 Modelling approach to identify enrichments of beach litter 

3.2.1 Methods 

The main objective of this analysis was to predict locations around Svalbard with high 
probabilities of beaching of macroplastics. BCSH applied two datasets on currents with distinct 
resolutions and assessed the outputs from both models. For Greenland no high-resolution 
dataset of sea current was available and therefor the modelling approach was not applied. 

3.2.1.1 Data sources 

3.2.1.1.1 Fishing data 
Sea-based sources of litter dominate in large parts of the Arctic with fishery being the main 
source (Bergmann et al., 2017; PAME, 2019; Tekmann et al., 2017). Bergmann et al. (2017) 
describes 44 to 100% of the mass of litter collected during beaches surveys in Svalbard 
consisting of fisheries-related items. Therefore, fishing data were used for a first estimation of 
the monthly sources of litter, derived from fishing activity of the region surrounding the Island 
of Svalbard. Fishing activity in the area north of 65° latitude and between 5°W and 65°E of 
longitude were included as sources (Figure 14). 

First, fishing activity was obtained from the monthly AIS data for 2019, available at the 
EMODNET website (https://www.emodnet-humanactivities.eu/view-data.php), and 
downloaded in raster format. Each monthly raster represents the number of routes of fishing 
boats by square kilometre (Figure 14). Then, based on the monthly raster density, we randomly 
deployed plastic particles at sea every 100 km of route (0.1% of the total points). Finally, each 
monthly particle dataset was saved as an independent text file to be loaded later in the current 
models. 

https://www.emodnet-humanactivities.eu/view-data.php
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Figure 14: Cumulated traffic density 

 
Cumulated traffic density (number of routes by square kilometre) for year 2019 with input data from the EMODNET 
website. Source: Compiled by BCSH 

3.2.1.1.2 Data on ocean currents 
Two different daily currents datasets were assessed, each at a different spatial resolution and 
covering a different area extension: 

A lower resolution and larger spatial coverage dataset was downloaded from the Marine 
Copernicus website (https://marine.copernicus.eu), with a resolution of 0.025 x 0.025 degrees 
and a spatial extension ranging from -10°W to 60°E and from 55°N to 90°N and a temporal 
coverage extended for two years, from 15th August 2008 to 15th August 2010 (C.1). The 
objective of this layer was to simulate the trajectories of plastic particles released according to 
the monthly fishing intensity during the full period. It was also used to feed particles to the 
higher resolution model. 

On the other hand, daily data on currents at higher resolution on a more restricted spatial 
coverage around Svalbard are available on the Norwegian Meteorological Service website 
(https://api.npolar.no). This dataset is available from 2005 until 2010 at 800 m spatial 
resolution and covers a narrow area around Svalbard. Therefore, it could not cover the full 
fishing area considered for this study (C.2), and plastic particles had to be fed from the lower 
resolution model. Data on currents were downloaded for a temporal range of one year, from 
16th August 2009 to 16thAugust 2010. 

https://marine.copernicus.eu/
https://api.npolar.no/
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3.2.1.1.3 Wind data and wave data 
Even if wind and wave stoke data are relevant components to predict the trajectories of floating 
objects at sea, no reliable data were found for the considered area and period. Most of the 
satellite-based ocean wind and waves products were either not available for the years 
2008 - 2010 or did not cover latitudes higher than 80°N. In addition, resolution was never higher 
than 0.25°. Therefore, wind and wave data could not be considered for the present study. 

3.2.1.2 Particle Trajectory Models 

Modelling was performed with OpenDrift v1.0, an open-source Python based framework for 
Lagrangian particle modelling (Dagestad et al. 2018). 

Lagrangian trajectory models are of common use to predict the pathways of floating objects in 
the ocean. Data on currents were fed as NetCDF files (Copernicus) or NetCDF ROMS files (API), 
while particles were multi-seed randomly inaugurated along the corresponding month from text 
files. 

As mentioned above, modelling was performed in two phases. In the first phase (LR-model) the 
particle trajectory model was applied on the simulated marine litter released each month since 
August 2008 until August 2010 for the whole area, using the low-resolution current data from 
Copernicus. During the second phase (HR-model), particles from the LR-model entering the area 
covered by the high-resolution current data (API) were fed into the high-resolution current data 
from API from August 2009 until August 2010 (Figure 15). 

The standard configuration of the PlasticDrift module was used for both models. However, due 
the lack of information regarding wind and wave stoke, a 10% uncertainty factor was included 
in the currents, thus giving the particles more room to spread over a larger surface area and to 
simulate more real-life conditions than those originated by the sea current alone. 

Figure 15: Schematics of the seeding and modelling time periods 

 
Schematics of the seeding and modelling time periods for the low-resolution and high-resolution plastic trajectory models. 
Particle seeding from AIS data was done during the entire period for the Low-resolution model, while particle seeding in the 
high-resolution model using the low-resolution model output as particle source was done between August 2009.  
Source: Compiled by BCSH 

Cumulative stranding of litter particles at the end of the study period (August 2010) was 
obtained for the LR model and HR model and was stored as NetCDF files for further analysis. 

3.2.1.3 Stranding density and comparison between models 

Stranded particles in the Svalbard area from both, the LR model and HR model, were imported 
into R software (RCore, 2019) and visualized using the ggplot2 library (REF). Statistical 
correlation between both point distributions was assessed by means of a linear model. In 
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addition, statistical differences between the spatial density pattern of stranded particles along 
the coast were assessed, computing the significance of the pairwise differences relative to the 
mean and variance of all differences between the two input datasets. This allowed for identifying 
regions of significant difference between the two datasets (i.e. Bateman et al 2010; Januchowski 
et al. 2010). Significant spatial differences were analysed using the SDMTools library (REF) in R 
software. 

3.2.2 Results 

3.2.2.1 Litter beaching results from different model resolutions 

Results obtained at the end of the period study (August 2010) are shown for the LR model 
(Figure 16) and HR model (Figure 17). In both cases, green dots represent the initial plastic 
particles released (42,912 particles for the LR model and 13,948 particles for the HR model). 

Figure 16: Start and end situation of the LR model 

 
Green dots represent initial particles locations estimated from the AIS data, blue dots represent final (active) particle 
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locations, red dots represent stranded particles in the last time step and grey dots are missing particles (leave the study 
area). Grey lines show the trajectory of the particles. Source: Compiled by BCSH 

Figure 17: Start and end situation of the HR model 

Green dots represent initial particles locations from the LR model, blue dots represent final (active) particle locations, red 
dots represent stranded particles in the last time step and grey dots are missing particles (leave the study area). Grey lines 
show the trajectory of the particles. Source: Compiled by BCSH 

Detailed stranding points and density of points are shown in Figure 18 for the LR model and 
Figure 19 for the HR model, respectively. Both particle trajectory models show similar stranding 
patterns regardless of their spatial resolution. Highest stranding probability occurred at the 
Southern and Western coast of Svalbard.  

3.2.2.2 Comparison of litter beaching results 

To make two comparable datasets, points were aggregated in cells of 5 km x 5 km intersecting 
the coastline (Figure 20). A linear regression model showed a significant relation between both 
density distributions along the coast of Svalbard with a measure of determination (R2) of 0.758. 
The residuals of the linear regression model showed higher variations between predicted 
standings in the southern coast (Figure 21). A spatial significant difference analysis confirmed 
the results from the linear regression, showing significant differences in the southern and 
western area (Figure 22). The HR trajectory model showed more probability of stranded 
particles at the western coast and the island of Hopen (indicated by orange squares) while the 



61 

LR trajectory model showed more probability of stranded particles in the Storfjorden and on 
Edgeøya (indicated by green squares). 

Figure 18: Stranding particles and particle density of the LR model 

Stranding particles (red dots) and particle density estimates along the coast of Svalbard derived from the Low-Resolution 
model at the last time step. Source: Compiled by BCSH 

Figure 19: Stranding particles and particle density of the HR model 

Stranding particles (red dots) and particle density estimates along the coast of Svalbard derived from the High-
Resolution model at the last time step. Source: Compiled by BCSH
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Figure 20: Comparison of the density of stranding particles for the two models  

Density of stranding particles by 5 km x 5 km cell used for the comparison between the LR model and HR model stranding 
output at the last time step. Scale is in number or particles by 5 km x 5 km cell. Source: Compiled by BCSH 

Figure 21: Residuals of the linear model comparing the stranding density obtained from the 
HR and LR models 

 
Although both results were well correlated (R2= 0.795), high residual values were observed at the southern and west coast. 
Red squares show areas with much higher probability of stranding shown by the HR model. Green squares show areas with 
much higher probability of stranding probability shown by the LR model. Cell size has 5 km x 5 km resolution. 
Source: Compiled by BCSH 
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Figure 22: Pattern Differences of LR and HR 

 
Significant spatial differences between the stranding densities obtained from the HR and LR models. Red squares show 
areas with higher significant probability of stranding in the HR model. Green squares show areas with higher significant 
probability of stranding in the LR model. Cell size has 5 km x 5 km resolution. Source: Compiled by BCSH 

3.2.3 Discussion 

The results of the two model approaches indicated potential beach litter accumulation to be 
mainly on the West coast of Svalbard (Figure 18, Figure 19). However, studies on beach 
monitoring as well as OSPAR studies on Svalbard indicated relatively low abundances on the 
western coast of Svalbard compared to higher abundances in the North. One explanation could 
be the predominating Easterly winds. As wind and wave data were not available for the study 
area during the study period, results might change once these are included. Wind and wave data 
are also a requirement for the Leeway configuration, that is a more accurate model configuration 
for big size plastics compared to PlasticDrift which focuses on microplastics. Anyhow, 
interpretations of beach litter data on Svalbard have to be cautious as reference data from 
conducted beach litter surveys are only available on the northern and western coasts and 
information on potential driving forces of beach litter is limited. Assuming that the results from 
both models (Copernicus and API) have enough similarities, it could be possible to run a new 
low-resolution model for 2019 with wind and wave data. Moreover, data on abundances of 
beach litter received by this studies’ fieldwork should be included for future approaches. 
Additional input parameter could further improve the model. The results of this study show the 
numbers of particles arriving to the coast. The elements are deactivated once they touch the 
coastline. However, they could be returned to the water immediately if it is not a sedimentary 
environment (i.e. cliffs), or if they arrive on a beach during high tide or a storm. This will depend 
on various factors such as the type of coast (beach or cliff), the slope of the beach or wave angle 
incidence. A follow-up study could build on the existing model and include wind and wave data 
as well as information about the coast type. Single coast type information could be acquired 
during the fieldwork for this study. Anyhow, because of the relative broad resolution of ocean 
circulation models and wind and wave data, modelling approaches can so far just give a first 
indication of the location of accumulation sites of marine litter in the Arctic. Arctic-wide higher 
resolution input data would be necessary to identify single beaches. 
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4 Work package 3 

4.1 Fieldwork Summary 
On April 30, 2021, M. Schulz (AE), A. Trobisch (AE) and M. Schnurawa (BCSH) performed a test 
beach litter survey on the dog beach of Rantum on the island of Sylt, applying the OSPAR method 
(2010) and a drone survey. Two 50 m-sections of beach were surveyed between the dune belt 
and the waterline applying the OSPAR method (OSPAR, 2010). Coordinates of large pieces of 
beach litter were measured applying a high-resolution Global Positioning System (GPS). 
Subsequently, the drone survey was carried out by M. Schnurawa on a 600 m-long beach section, 
which included the two 50 m-long sections of beach conventionally surveyed.  

In the first six months of 2021, A. Trobisch (AE) and M. Schnurawa (BCSH) organized the 
expeditions to Svalbard and Greenland evaluating the different options for logistics. Promising 
approaches were land-based operations with local partners using zodiacs or small boats, the 
chartering of a private vessel and the cooperation with cruise operators.  

Regarding cruise operators, BCSH was in exchange with the Association of Arctic Expedition 
Cruise Operators (AECO). The environmental specialist of AECO introduced the project to AECOs 
members and several cruise operators (e.g. Arctic Sailing Escape, Hurtigruten, Marine Incognita, 
OceanWide and Secret Atlas) and contacted BCSH discussing potential cooperation. Due to the 
uncertainties of Covid-19 pandemic BCSH and AE decided against a cruise-based fieldwork. 
Anyhow, a cooperation with a cruise operator is an attractive option which should be considered 
for future campaigns as it can combine scientific research, public relation, and education. 
Furthermore, it permits the application of citizen science approaches as well as an 
implementation within an existing infrastructure. 

Chartering a private vessel was just considered shortly, as prices were too costly and only 
feasible when sharing the vessel with other stakeholders or scientists which was not possible 
due to Covid-19 pandemic.  

Finally, BCSH and AE decided to apply the land-based approach for all study areas on Svalbard 
and Greenland collaborating with local partners. From the base station on land, the surveys 
were planned, and the equipment could be prepared. A boat operator took all participants with a 
zodiac or small boat to the study area. As the results of working package 2 could only give rough 
indications of beaches with high litter accumulations, local expertise was essential. On Svalbard 
Geir Gabrielsen from the NP provided detailed knowledge about potential beaches. For 
Greenland BCSH and AE exchanged with WSP and WWF for Nuuk and the boat driver Jan 
Banemann and the municipality of Qeqqata for Sisimiut. The land-based operation allowed a 
flexible survey planning and short-term decisions required by the weather conditions. 

The expedition to Svalbard lasted from June 25, 2021 to July 17, 2021. A quarantine of ten days 
was necessary in Oslo, before the journey to Ny-Ålesund via Longyearbyen could be continued 
on July 5, 2021. During their stay in Ny-Ålesund, A. Trobisch and M. Schnurawa participated in 
scientific meetings and exchange within the research camp. Due to unfavourable weather 
conditions, apart from a test of the equipment outside the Radio Silent Zone on July 7, 2021, only 
one one-day excursion for a beach litter survey at Kapp Mitra was possible (Figure 24). The day 
before excursion, strong winds prevailed, probably influencing the beaching of floating litter. 
Apart from A. Trobisch and M. Schnurawa, a boat guide, two students and two polar bear 
observers participated in the excursion. A total of two 50 m sections of beach were completely 
surveyed applying the OSPAR method. Coordinates were determined by means of a high-
resolution GPS. The coordinates of single pieces of litter could not be measured because of 
lacking access to internet and radio. An additional section of beach could only partly be surveyed 
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by as much as 20%, because a polar bear was approaching, and therefore, the excursion had to 
be terminated. Table 5 shows the properties and coordinates of the surveyed beach sections.  

Before starting the OSPAR monitoring, drone surveys were conducted (Two RBG and two VIR 
surveys; Figure 23). The surveys included the two sections monitored after OSPAR and 
comprised around 2.75 km of coastline and an area of around 25 ha. 

WV3 satellite images of Kapp Mitra were already acquired on July 25, 20121 The image covers 
an area of around 7500 ha with a coastline of 23 km length and includes 17 spectral bands (1x 
pan-chromatic, 8x RGB/ NIR, 8x SWIR). Due to potential cloud coverage an acquisition time span 
of up to three weeks before the fieldwork was chosen. The final offset between satellite 
acquisition and fieldwork was eight days. 

Figure 23 Kapp Mitra, Landing of WingtraOne – Picture: Geir Wing Gabrielsen 

 
 

Table 5 Coordinates and properties of the two sections of beach at Kapp Mitra, surveyed 
on July 11, 2021. Coordinates are given as Universal Transverse Mercator (UTM) – 
coordinates with the date WGS84. 

Property Kapp Mitra 1 Kapp Mitra 2 

Position Start 550671.3 N, 8783090.3 E 550621.2 N, 8783078.4 E 

Position End 550621.2 N, 8783078.4 E 550571.6 N, 8783066.1 E 

Beach fact sheet no no 

Beach substrate 80% rock, 20% sand 80% rock, 20% sand 

Beach inclination 10% 10% 
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Property Kapp Mitra 1 Kapp Mitra 2 

Mean width at high 
water nip tide  

15 m 15 m 

Total length of the 
beach 

175 m 175 m 

Beach surroundings Cobbles, drift wood, tundra Cobbles, drift wood, tundra 

Exposition to sea SSE SSE 

Prevailing wind 
direction 

E – SE E – SE 

Prevailing residual 
currents 

No information No information 

Objects influencing 
currents 

No No 

Distance to next 
settlement/harbour 

23 km (Ny-Ålesund) 23 km (Ny-Ålesund) 

Position of next 
settlement/harbour 

SE SE 

Number of 
inhabitants of next 
settlement 

50 (winter) – 150 (summer) 50 (winter) – 150 (summer) 

Type of next 
harbour 

Mainly zodiacs and small arctic circle boats, 
few seal hunting boats and ships for supply   

Mainly zodiacs and small arctic circle 
boats, few seal hunting boats and ships 

for supply   

Size of next 
harbour 

small (10 – 15 vessels) small (10 – 15 vessels) 

Next river mouth No information No information 

Wastewater 
discharge 

no no 

Tourism no no 

Infrastructure 
behind the beach 

no no 

Facilities for food 
consumption at the 
beach 

no no 

Beach cleaning 
activities 

no no 

Litter collection no no 

Accessibility By boat with polar bear observers By boat with polar bear observers 

Beach usage For the first time for scientific purposes, no 
usage before 

For the first time for scientific purposes, 
no usage before 
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The expedition to Greenland took place from September 13, 2021, to September 28, 2021. Due 
to technical problems of the airline, the flight back had to be postponed to September 29, 2021. 
During the stay on Greenland, beach litter surveys were performed near Nuuk and Sisimiut with 
up to four replicate sections of beach (Table 6). Travelling to the selected beaches was done by 
boat with a boat guide. Conventional surveys were carried out applying the OSPAR method 
(OSPAR, 2010), where the most recent categorization of 2021 was used. Categorization was 
amended by beach litter types, which are characteristic of the western coast of Greenland. These 
new litter types were derived from the SUMAG project and are based on the splitting of OSPAR 
beach litter types, as was similarly done by the Joint Category list of the MSFD. Furthermore, 
GNSS measurements were made to determine the exact position of the found litter as a reference 
for the drone surveys. Due to technical problems with the GNSS receiver, this approach was only 
available for the two survey areas around Sisimiut. 

Before starting the OSPAR monitoring, for each of the six survey areas drone surveys were 
conducted (two RBG and two VIR surveys; Table 7). WV3 satellite images of Nuuk and Sisimiut 
were acquired on September 13, and September 15, 2021respectively. All study sites were cloud 
free. An overview of the satellite coverage is shown in Figure 25 and Figure 26. For Nuuk, the 
time difference between satellite acquisition and fieldwork was only two to four days, for 
Sisimiut six to seven days. 
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Table 6 Coordinates and properties of surveyed sections of beach near Nuuk and Sisimiut. Coordinates are given as Universal Transverse Mercator 
(UTM) – coordinates with the date WGS84. 

Property Nuuk  
Day 1 

Nuuk  
Day 2-1 

Nuuk  
Day 2-2 

Nuuk  
Day 2-3 

Nuuk  
Day 3 

Sisimiut 
Day 4-1 

Sisimiut 
Day 4-2 

Sisimiut 
Day 4-3 

Sisimiut 
Day 4-4 

Sisimiut 
Day 5-1 

Sisimiut 
Day 5-2 

Date Sep. 15, 21 Sep. 16, 21 Sep. 16, 21 Sep. 16, 21 Sep. 17, 21 Sep. 23, 21 Sep. 23, 21 Sep. 23, 21 Sep. 23, 21 Sep. 24, 21 Sep. 24, 21 

Position Start 461901 N, 
7109578 E 

462106 N, 
7109376 E 

462850 N, 
7105287 E 

462855 N, 
7105248 E 

462037 N, 
7094362 E 

404196 N, 
7424987 E 

404180 N, 
7425034 E 

404138 N, 
7425123 E 

404114 N, 
7425167 E 

409475 N, 
7424354 E 

409590 N, 
7424297 E 

Position End 461862 N, 
7109570 E 

462093 N, 
7109345 E 

462879 N, 
7105285 E 

462840 N, 
7105163 E 

462022 N, 
7094386 E 

404180 N, 
7425034 E 

404138 N, 
7425123 E 

404114 N, 
7425167 E 

404086 N, 
7425208 E 

409505 N, 
7424323 E 

409578 N, 
7424332 E 

Beach substrate 90% gravel 50% gravel, 
50% blocks 

50% gravel, 
50% sand 

100% 
gravel 

90% gravel 100% sand 100% sand 100% sand 100% sand 85% sand, 
12,5% 

gravel, 
2,5% 

blocks 

85% sand, 
15% gravel 

Beach cleaning No No No Seasonally 
in May/ 

June and 
September

/ October  

No No No No No No No 

Mean width at 
high water nip 
tide 

15 m 17 m 8 m 5 m 11 m 9 m 9 m 9 m 9 m 8 m 14 m 

Total length of 
the beach 

40 m 30 m 30 m 90 m 30 m 250 m 250 m 250 m 250 m 50 m 50 m 

Beach 
surroundings 

Tundra Tundra Tundra and 
grassland 

Tundra Tundra Tundra Tundra Tundra Tundra Tundra Tundra 

Exposition to 
sea 

W N S/ SE E S/ SE WSW WSW WSW WSW W W 
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Property Nuuk  
Day 1 

Nuuk  
Day 2-1 

Nuuk  
Day 2-2 

Nuuk  
Day 2-3 

Nuuk  
Day 3 

Sisimiut 
Day 4-1 

Sisimiut 
Day 4-2 

Sisimiut 
Day 4-3 

Sisimiut 
Day 4-4 

Sisimiut 
Day 5-1 

Sisimiut 
Day 5-2 

Prevailing wind 
direction 

NE E/ NE S/ SE S/ SE S/ SE W W W W W W 

Prevailing 
direction of 
currents 

NE E/ NE S/ SE S/ SE S/ SE W W W W W W 

Objects, which 
influence near-
shore currents 

No No No No No No No No No No No 

Distance to next 
settlement/ 
harbour 

6.5 km 6.5 km 11 km 11 km 21 km 20 km 20 km 20 km 20 km 27 km 27 km 

Position of next 
settlement/ 
harbour 

NE NE N N N WNW WNW WNW WNW NW NW 

Number of 
inhabitants of 
next settlement 

17,500 17,500 17,500 17,500 17,500 5,500 5,500 5,500 5,500 5,500 5,500 

Type of next 
harbour 

Small and 
big ships, 

ferries and 
container 

ships  

Small and 
big ships, 

ferries and 
container 

ships  

Small and 
big ships, 

ferries and 
container 

ships  

Small and 
big ships, 

ferries and 
container 

ships  

Small and 
big ships, 

ferries and 
container 

ships  

Sea port Sea port Sea port Sea port Sea port Sea port 

Size of next 
harbour 

big big big big big small small small small small small 

Tourisms no no no no no no no no no no no 
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Property Nuuk  
Day 1 

Nuuk  
Day 2-1 

Nuuk  
Day 2-2 

Nuuk  
Day 2-3 

Nuuk  
Day 3 

Sisimiut 
Day 4-1 

Sisimiut 
Day 4-2 

Sisimiut 
Day 4-3 

Sisimiut 
Day 4-4 

Sisimiut 
Day 5-1 

Sisimiut 
Day 5-2 

Infrastructure 
behind the 
beach 

none none none none none none none none none none none 

Facilities for 
food 
consumption at 
the beach 

none none none none none none none none none none none 

Beach cleaning 
activities 

no no no yes no no no no no 2019 2019 

Litter collection no no no yes no no no no no 2019 2019 

Accessibility By boat By boat By boat By boat By boat By boat By boat By boat By boat By boat By boat 

Beach usage Fishing 
nearby 

Fishing 
nearby 

Fishing 
nearby 

Fishing 
nearby 

Fishing 
nearby 

No infor-
mation 

No infor-
mation 

No infor-
mation 

No infor-
mation 

No infor-
mation 

No infor-
mation 



 

71 
 

Figure 24  Study Area Svalbard: Kapp Mitra 

 
Source: Compiled by BCSH 

Figure 25 Study Area Greenland: Nuuk 

 
Source: Compiled by BCSH 
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Figure 26 Study Area Greenland: Sisimiut 

 
Source: Compiled by BCSH 
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4.2 Methods 

4.2.1 OSPAR 

For in situ beach litter monitoring the OSPAR method was applied as described on page 35 
section 2.1.2.1. 

Based on the survey data of the sections of beach on Svalbard and Greenland, mean abundances 
were calculated. From these mean abundances, mean material compositions and the most 
common litter categories were deduced (Table 2). Power analyses on one-sided one-sample 
Wilcoxon rank sum tests were calculated to estimate how long beach sections have to be for a 
significant detection of beach litter reduction by as much as 10%, 20%, 30%, 40% and 50%, 
respectively. For this purpose, a significance level of 0.05 was used. Power analyses were done 
with the statistical software Gpower (® University of Kiel, Germany). 

4.2.2 Drone Survey 

To obtain high-resolution aerial images of the study area, drone surveys were applied. 
Therefore, a WingtraOne drone with two payloads, a Sony QX1 20MP camera and a MicaSense 
Altum multispectral sensor, were used. Only one payload at the time could be mounted, resulting 
in at least two surveys per study area. The WingtraOne operates like a fixed wing drone and is 
therefore specialized for large scale applications as required in the Arctic. The GSD for all 
surveys were 1.4 cm and 3.4 cm for the Sony QX1 and the MicaSense Altum respectively, 
resulting in a flight altitude of 68 m and 80 m. Those GSD were the lowest possible for this 
drone-sensor configuration. Frontal and side overlap were set to 56% and 80 - 90% for the Sony 
QX1 and 70% and 80 - 90% for the MicaSense Altum. The frontal overlap was limited by the 
drones’ minimum flight speed, the GSD and the trigger time of the sensor and was maximized for 
both configurations. The flight time of the single surveys varied between 06:56 and 49:26 
minutes covering areas between 1.31 ha and 33.85 ha. Between 108 and 1877 single images 
were recorded and geo-tagged per survey (Table 7). The WingtraOne’s PPK module and a Stonex 
S900T GNSS receiver were used to correct the absolute geo-location with an accuracy of around 
2 cm for the RGB images. The geo-tagged images were processed in Pix4D mapper version 4.6.4 
to create point clouds and to calculate elevation models, othomosaics and index maps. As the 
PPK correction was only available for the Sony QX1, Ground Control Points (GCPs) were used for 
the alignment between multispectral and RGB images.  

Table 7 Overview of Drone surveys conducted on Svalbard and Greenland 

Study Area Date Local time 
VIR- survey 

Nr.of pictures 
[RGB/ VIR] 

Flight duration 
[min] [RGB/ VIR] 

Area covered 
[ha][RGB/VIR] 

Kapp Mitra 1 June 11, 21 10:38 – 11:28 1223/ 1877 45:11/ 50:26 32.1/ 33.85 

Kapp Mitra 2 June 11, 21 12:50 – 13:36 1165/ 1790 37:03/ 46:42 33.97 

Nuuk Day 1 September 15, 21 10:07 – 10:24 163/ 240 09:00/ 17:19 2.93 

Nuuk Day 2-1 September 16, 21 09:31 – 09:46 186/ 285 10:56/ 15:47 2.13 

Nuuk Day 2-2 September 16, 21 13:09 – 13:23 142/ 205 09:55/ 14:08 1.31 

Nuuk Day 3 September 17, 21 13:53 – 14:12 988/ 454 33:45/ 19:34 21.09/ 5.45 

Sisimiut Day 1 September 23, 21 11:22 – 11:25 108/ 168 08:08/ 03:56 1.98 

Sisimiut Day 2 September 24, 21 12:35 – 12:51 226/ 345 10:55/ 16:49 4.24 
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4.2.2.1 Manual Screening 

For the manual screening, the orthomosaics (RGB, GSD: 1.4 cm) were loaded into QGIS 3.16.6. A 
5 x 5 m grid and a scale of 1:20 were used to visually search the study area for litter objects. All 
images were screened by the same person, making comparison between surveys more reliable. 
In-field knowledge of the main litter categories was used to facilitate the categorization. 

The boundaries of litter objects were marked and saved into a shapefile format. If possible, 
information about the material was added. An indicator of certainty described the confidence 
whether an object could be identified as litter with values between 1 - 3 (uncertain, possible, 
certain). Objects that could not be assigned to a category were classified as others. After finishing 
the manual screening, the area of the objects was calculated, and the height information was 
extracted from the DSM. The DSM was further used to create a 0 m (ASL) contour line from 
which the closest distance to each litter object was calculated.  

Photos taken with a digital camera were used to verify the marked objects together with in-situ 
GNSS measurements. Due to technical problems, GNSS measurements were only available for 
the two surveys close to Sisimiut (Greenland) and were performed on a subset of the objects, 
which were found and registered with the OSPAR method. It was not possible to measure all the 
objects because of limited accessibility and time. For the two surveys close to Sisimiut, the 
results of the manual screening were compared to the objects measured via GNSS, and a 
detection rate was calculated.  

To visualize the spatial distribution, a density map of 1.2 x 1.2 m, 3.7 x 3.7 m and 10 x 10 m was 
calculated with both, the number of objects and the area coverage per unit. A grid size of 
1.2 x 1.2 m and 3.7 x 3.7 m was selected to fit the cell size of WorldView3 imagery. The density 
maps were aligned to the raster cells of WorldView3 satellite images and used to indicate 
satellite pixels covered by plastic.  

4.2.2.2 Statistical Analysis 

For comparing the abundances of litter found by OSPAR and drone surveys within the same 
areas, litter objects were counted for each surveyed location. The success of the drone surveys 
was assessed by calculating the percentage of objects found on the drone footage, considering 
the OSPAR results to be the total abundance of litter. 

For all statistical analyses regarding the properties of the detected litter objects, data from 
Greenland and Svalbard drone flights were combined. All litter objects found on the aerial 
images were considered, regardless of their position in- or outside of the OSPAR reference areas. 
Objects for which material was not classified as plastic were excluded from further analyses, but 
an overview table showing the number of litter objects found for each material category can be 
found in the appendix (E.1). Size distribution of the plastic objects is strongly right skewed, with 
only few objects of large size. Specifically, only five objects are larger than 1 m² (ranging up to 
4.7 m²), so these were also excluded from further analyses. Moreover, we excluded all objects of 
colours that were found less than 20 times. 

Each object was additionally allocated to a more specific type of litter. If no specific type could be 
recognised, the type “other” was allocated. Based on this classification a new variable 
“type_ident” was introduced. This variable is a binary code for whether an object could be 
classified as a specific type of litter (1) or not (0).  Similarly, the binary variable “certain” was 
introduced based on the values for how certain an object was classified as litter (with 1 = 
possibly litter, 2 = probably litter, 3 = certainly litter). Only litter objects classified with certainty 
(3) were coded 1, others (1-2) were coded 0. 
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We investigated the properties of the detected litter objects to explore why some litter objects 
might be found on drone footage while others might not. We assessed the distributions of size 
and colour among plastic litter objects. To investigate their effects on whether its type could be 
classified, we used a binomial generalised linear model (glm). The saturated model included 
“type_ident” as the response variable and the explanatory variables colour and area (cm²), as 
well as their interaction term (type_ident ~ colour * area). We applied the same model structure 
to explore the effects of size and colour on the certainty of an object to be identified as litter on 
the drone footage (certain ~ colour * area). 

We gradually reduced all models and compared them to the saturated models by ranking their 
AIC (Akaike information criterion) values. See E.3 and 0 in the appendix for an overview of all 
full and reduced models, including their AIC ranking. Models with an ∆AIC <2 were considered 
equally fitting. Homogeneity of variance was assessed by plotting the residuals of the best-fitting 
models (appendix). We excluded any outliers that were influential by standard of the Cook’s 
distance. In order to avoid mulit-collinearity, we computed the variance inflation factor (VIF) for 
all models (Zuur et al., 2010). The visreg package was used to plot the final models. All data 
processing and statistical analysis was performed in R version 3.6.3 (RCore Team, Vienna). 

4.2.2.3 (Semi-) Automatic classification 

For the (semi-) automatic classification of plastics, machine learning (Random Forest (RF), 
Support Vector Machine (SVM)) and deep learning approaches (neural network) were applied 
and compared in their performance. Because of the selected GSD of 1.4 cm and 3.4 cm for RGB 
and VIR respectively, a pixel-based approach was applied as objects down to the size of single 
pixels were expected.  

To evaluate the benefit of multispectral-drone footage, classifiers using RGB and VIR datasets 
were furthermore compared. Therefore, the RGB dataset was extended by calculating colour 
spaces of LAB, HSV, YcBcR. The VIR dataset was extended by the same colour spaces as well as 
by five indices: NDVI, BNDVI, GNDVI, NDRE and rendvi2.  

4.2.2.3.1 Indices and colour spaces. 
In order to expend the input features for semi-automatic classification approaches, indices and 
colour spaces were calculated.  

The applied indices were derived from the spectral bands of the MicaSense Altum sensor and 
limited by the sensor’s spectral coverage. They are normalized combinations of two single bands 
which are widely used in drone applications, mostly in vegetation analyses (Beyer & Grenzdörfer, 
2018; Pourazar et al., 2019). The applied indices are: Normalized Difference Vegetation Index 
(NDVI), Blue NDVI (BNDVI), Green NDVI (GNDVI), Normalized Difference Red Edge (NDRE) and 
redEdge NDVI (Rendvi2) (Table 8). 

The use of colour spaces for beach litter detection was already successfully applied in several 
studies (Gonçalves et al., 2020a, 2020b, 2020c and Pinto et al., 2021). The colour spaces used were 
HSV, CIE-LAB and YCbCr (Table 9). They were calculated based on the RGB images. 

Table 8: Indices derived from MicaSense Altum sensor 

NDVI BNDVI GNDVI NDRE Rendvi2 

𝑁𝐼𝑅 − 𝑟𝑒𝑑
𝑁𝐼𝑅 + 𝑟𝑒𝑑

 
𝑁𝐼𝑅 − 𝑏𝑙𝑢𝑒
𝑁𝐼𝑅 + 𝑏𝑙𝑢𝑒

 
𝑁𝐼𝑅 − 𝑔𝑟𝑒𝑒𝑛
𝑁𝐼𝑅 + 𝑔𝑟𝑒𝑒𝑛

 
𝑁𝐼𝑅 − 𝑟𝑒𝑑𝐸𝑑𝑔𝑒
𝑁𝐼𝑅 + 𝑟𝑒𝑑𝐸𝑑𝑔𝑒

 
𝑟𝑒𝑑𝐸𝑑𝑔𝑒 − 𝑟𝑒𝑑
𝑟𝑒𝑑𝐸𝑑𝑔𝑒 + 𝑟𝑒𝑑
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Table 9:  Colour spaces derived from RGB channels 

HSV CIE-LAB YCbCr 

H: Hue L: perceptual lightness Y: luminance intensity 

S: Saturation A:  green-red axis Cb: blue chrominance component 

V: Brightness B: blue-yellow axis Cr: red chrominance components 

4.2.2.3.2 Extraction of training and validation data 
In order to train and validate different classification approaches two reference datasets were 
created. Therefore, land cover classes were defined: For Svalbard five classes were defined 
including plastic, rock, vegetation, water, and wood and for Greenland nine classes including 
algae, plastic, rock, sand, snow, vegetation, water, wood, and shadow. The class shadow was added 
in a later step after evaluating first classification results and was only applied in scenario (3). 
The difference in number of classes between Svalbard and Greenland are the result of different 
environmental conditions. 

For all survey areas polygons were created covering the occurring land cover classes, including 
the screened plastic objects. Those polygons were used to randomly sample reference points per 
class with a minimum distance of three-times the GSD. Reference points from the surveys on 
Svalbard and Greenland were separated into two datasets, as the land cover classes differed.  

For Svalbard, a total number of 26091 points were sampled with the smallest class plastic with 
660 samples and the biggest class rock with 10881 samples. A sub-sampling into 496 points per 
class for training and 150 for validation was done to assure a balance between the classes. 

For Greenland, a total number of 39015 points were sampled with the smallest class shadow 
with 2000 samples and the biggest class vegetation with 7482 samples. A sub-sampling into 
1500 points per class for training and 500 for validation was done to assure a balance between 
the classes. 

The created points were used in R version 3.6.3 to extract the pixel values of different feature 
spaces to train the single classifiers. For Greenland three scenarios of feature spaces were 
tested: 

1. 1.4 cm RGB data combined with LAB, HSV and YcBcR resulting in a total of 12 features 
2. 3.4 cm VIR data combined with five Indices resulting in 10 features 
3. 3.4 cm VIR data combined with LAB, HSC, YcBcR and five indices giving 19 features 

4.2.2.3.3 Classifier: 
For the (semi-) automatic classification of beach litter three classifiers were applied and 
compared in their performance. The comparison was applied to images from Greenland only, 
because many reference data were available here. As the classification accuracy of Random 
Forest, Support Vector Machine and deep learning were comparable, only Random Forest was 
applied to images from Svalbard, being the least computationally intensive.  

4.2.2.3.3.1 Random Forest 
Random Forest (RF) is an ensemble classifier widely used in remote sensing (e.g. Gonçalves et 
al., 2020a, 2020b, 2020c; Martin et al., 2018). RF was introduced by Breiman in 2001 and 
combines independent decision trees into an ensemble learning algorithm. The assumption is 
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that independent trees produce individual errors which are not produced by the majority of 
other trees. The combination of independent classifiers furthermore reduces the variance and 
the bias of the algorithm (Breiman, 2001; Waske, B., Braun, M., 2009). Through random subsets 
of training data, input data is generated which is then used to train the classifier. Each subset 
usually uses two-thirds of the dataset for training. The last third is used for evaluation of the 
classification as the so-called out-of-bag (oob). Decision trees decide at each node based on a 
random split rule how to divide the input data. Split rules are defined by a random selected 
feature subset (here spectral bands, indices, and colour spaces) which reduces the correlation 
between trees and therefore also the generalization error (Breiman 2001). The size of the 
feature subset is usually defined by the square root of input features. To determine the best 
decision at each node, several techniques such as gain-ratio (Quinlan, 1993), Gini Index 
(Breiman et al., 2017) and Chi-square (Mingers, 1989) can be applied. The most used approach 
for Random Forest is the Gini index which calculates the impurity before and after a split to 
quantify the best decision. The highest decrease in impurity reflects the best decision. The Gini 
index leads to a simple and compact tree structure. Each decision tree returns the most frequent 
class to the input. Usually, a simple majority vote creates the final classification result. The 
number of trees and the size of the feature subset is defined by the user. 

Random forest was applied within the open-source software R version 3.6.3. The randomForest 
library was implemented by Liaw and Wiener using the Fortran original of Breiman et al., 2011. 
To obtain the best classification accuracy, the number of trees and input features were 
optimized for each scenario. 

4.2.2.3.3.2  Support Vector Machine 
Support Vector Machines (SVM) are another machine learning classifier widely used in remote 
sensing and already applied in beach litter detection (Escobar Sánchez et al., 2021; Gonçalves et 
al., 2020c). 

SVM uses training data to create a decision surface (hyperplane) which is separating the input 
data into user-defined classes. If the classes are not linearly separable, SVM transforms them 
into a high-dimensional space using kernel methods. A commonly used kernel function is the 
radial basis function (Waske et al, 2007) which was also applied in this study. Applying SVM 
with the radial basis function, two parameters can be adjusted. The cost parameter C which 
defines the amount of training data that can be misclassified and the parameter Υ which changes 
the shape of the decision boundary (Gonçalves et al., 2020c). To determine optimal values for C 
and Υ the grid search method was applied for each scenario. The grid search method applies a 
defined range of different combinations of C and Υ parameters to determine the combination 
with the highest classification accuracy (Gonçalves et al., 2020c; Mather & Tso, 2016). 

4.2.2.3.3.3 Deep Learning 
For comparison with the machine learning algorithms a simple three layer fully connected 
neural network was tested for litter classification using the same reference data set. The neural 
network is composed of an input-, hidden and output layer. Three scenarios of class weighting 
for cross entropy loss were tested to improve the classification of plastics. The first scenario did 
not use any weight, the second scenario used a medium weighting for plastics (a factor of 4 for 
plastic and 1 for other classes) and the third scenario a strong weighting with a factor of 4 for 
plastic and 0.1 for other classes. The neural work was trained and inferred in Python v.3.9.7 (in 
the PyTorch framework). 

4.2.2.3.3.4 FasterRCNN 
Object Detection using Bounding boxes was tested using FasterRCNN. Due to limited objects 
available for training, the model over fitted to the input data (results in low test accuracy) which 
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may indicate the possibility of an acceptable model in future with significantly more data. 
Besides this first evaluation, the FasterRCNN was not further tested. 

4.2.2.4 Accuracy Assessment  

Validation was applied to determine the quality of the classification results. Validation was 
performed with the means of a confusion matrix. The confusion or error matrix provides a cross 
tabulation of the classes predicted by the classification against the validation data. Validation 
data represented about 25% of the reference data obtained by sampling. The confusion matrix 
obtains information about overall and per Class Accuracy and User’s and Producer’s Accuracy. 
Furthermore, areal estimations can be obtained. The use of a confusion matrix implies the 
assumption that each pixel can be associated to a single class. The accuracy obtained by the 
confusion matrix can be understood as a thematic accuracy. The diagonal of the matrix 
represents the correctly classified data whereas the off-diagonal represents false classification. 
User’s Accuracy (UA) is computed using the number of correctly classified validation data to the 
total amount of validation data assigned to a particular class. Pixels mistakenly assigned to a 
particular class represent the error of commission. Producer’s Accuracy (PA) reflects the 
number of validation data of a certain class correctly assigned to the corresponding class. 
Validation data not assigned to the corresponding class account to the omission error of this 
particular class. Therefore, an error of omission of one class, represents an error of commission 
in the other (Strahler, 2006).  

4.2.3 Satellite imagery 

For a large-scale application of remote sensing techniques for beach litter detection in the Arctic, 
satellite imagery was tested. Therefore, WV3 satellite imagery was acquired close to the 
fieldwork dates, recording VIR and SWIR imagery with a resolution of 1.2 m and 3.7 m, 
respectively. The WV3 imagery was ordered by Maxar Technologies as a level 3 ortho product 
with atmospheric compensation (for Greenland only) and radiometric correction. The spectral 
signals of the WV3 imagery were supplied with 16 bits of dynamic range and transformed to 
surface spectral reflectance. As for Svalbard the acquired WV3 imagery did not include 
atmospheric compensation, an atmospheric correction approach was applied as described in de 
Grandpré et al. (2022). 

As the litter objects expected were of sub-pixel size, a manual screening was not possible. In 
addition, a comparison with the OSPAR monitoring was not applied, as the detection and 
classification of macro litter would require a much higher resolution (see drone imagery). 
Instead, we focused on whether satellite imagery can help to locate areas of high beach litter 
accumulations. Studies of floating marine litter showed that even litter in sub-pixel size could be 
detected by satellites (Biermann et al., 2020).  

To evaluate the potential of WV3 imagery for beach litter detection, the density maps of the 
manual drone screening were used to create a reference data set. Having an information about 
the litter coverage per pixel, reference data were summarized to pixels covering litter in two 5% 
classes between 0 - 10% and in nine 10% classes from 10 – 100%. Additionally, pixels covering 
the main background groups were summarized into the following classes: Vegetation, rocks, 
wood, and sand. The reference data were then used to extract and compare the spectral signal of 
the satellite imagery. 

Besides, an approach of spectral unmixing was applied to test whether pixels partially covered 
by plastic can be identified by using a linear unmixing model. Therefore, spectral endmember 
(pure spectra of each class) of all occurring classes were calculated by averaging the spectral 
signal of pixels which were covered by 100% of the corresponding class. For plastic, the spectral 
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signal of the pixel with highest plastic coverage (96.7%) was used. Using the endmember, the 
linear unmixing model calculates the fraction of the different classes within a pixel. 

4.3 Results and discussion 

4.3.1 Results of conventional surveys 

On Svalbard, mean total abundance was as low as 28.5 pieces of litter per 50 m beach. Beach 
litter consisted of 57.9% plastic, 40.4% wood and 1.7% rubber. The high percentage of plastics 
agrees well with the results of previous beach litter studies on Svalbard (Bergmann et al., 2017). 
Among the top-14 litter categories, six are attributable to fishing and shipping. (Table 10) 
sources is highlighted, which is in line with the results of previous studies (Bergmann et al., 
2017; Weslawski and Kotwicki, 2018).  

Table 10 The most abundant litter categories on the two sections of beach near Kapp Mitra, 
surveyed according to the OSPAR protocol (OSPAR, 2010). Numbers in rectangular 
brackets give the OSPAR beach litter IDs. 

Rank OSPAR beach litter category Mean abundance [-] 

1 Wood: Other <50 cm [74] 8 

2 Plastic: Nets and net rests <50 cm [115]  4.5 

3 Plastic: Plastic fragments 2.5 cm ><50 cm [461 a] 3.5 

4 Wood: Other >50 cm [75] 3 

5 Plastic: Styrofoam [45] 2 

6 Plastic: Caps and lids[15] 1.5 

6 Plastic: Strapping bands [39] 1.5 

8 Plastic: Tangled nets [331 a] 1 

8 Plastic: Fish boxes [341 a] 1 

10 Plastic: Ropes [31] 0.5 

10 Plastic:  Strings and cords [321 a] 0.5 

10 Plastic: Other [48] 0.5 

10 Rubber: Balloons [49] 0.5 

10 Wood: Cork [68] 0.5 

 

Near Nuuk and Sisimiut, mean total abundances of beach litter amounted to 116.4±111.9 pieces 
and 87,3±33,5 pieces on a 50 m section of beach, respectively. This was in the same order of 
magnitude as Strietmann et al. (2021) found on the western coast of Greenland. Material 
composition was dominated by plastics and processed wood (Figure 27 and Figure 28), which 
again agrees with the results of Strietmann et al. (2021). Beach litter types, which can definitely 
be assigned to sea-based sources, were the most common among the top-ten litter types (Table 
11 and Table 12). This finding is partly contradictory to the results of Strietmann et al. (2021), 
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who found that domestic waste was predominant. These differences are likely because the latter 
authors partly surveyed beaches in closer vicinity to settlements than in the study at hand. 
However, the precise distances to settlements are not given in the study of Strietmann et al., 
2021). 

Power analyses gave statistical powers <50% and >80% for beaches near Nuuk and Sisimiut, 
respectively, for beach litter reductions of 50% (Figure 29). At lower reduction rates, statistical 
power was even lower and thus not sufficient. Therefore, surveyed beach sections should have a 
minimum length of 200 m, because near Sisimiut, replicate data of four beach sections of 50 m 
length were used for power analyses. In turn from a logistic point of view, this supports the 
application of UAVs for beach litter surveys on Greenland.  

Figure 27 Mean material composition of beach litter on the beaches near Nuuk. 

 
Source: Compiled by AE 
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Figure 28 Mean material composition of beach litter on the beaches near Sisimiut. 

 
Source: Compiled by AE 

  



 

82 
 

Table 11 The most abundant litter types on conventionally surveyed sections of beach near 
Nuuk on Greenland. Numbers in rectangular brackets give OSPAR beach litter type 
IDs. 

OSPAR beach litter 
type 

Arithmetic mean  
[-] 

Standard deviation 
[-] 

Percentage of total 
abundance [%] 

Coefficient of 
variation [%] 

Plastic fragments 
2.5 cm – 50 cm 
[461] 

27.4 23.5 23.5 85.8 

Styrofoam [other 
items] 

11.6 20.5 10.0 176.8 

Shotgun cartridges 
[43] 

11.4 10.2 9.8 89.6 

Rope >1 cm [31] 11.4 11.5 9.8 100.7 

Other wood 
<50 cm [74] 

7.8 8.5 6.7 108.6 

Other wood 
>50 cm [75] 

5.2 6.2 4.5 119.6 

Strapping bands 
[39] 

4.0 3.8 3.4 95.2 

Other plastic items 
[48] 

3.4 7.6 2.9 223.6 

Drinks [4] 2.8 4.8 2.4 170.2 

String and cord 
<1 cm; not from 
dolly ropes or 
unidentified [321] 

2.6 4.3 2.2 166.8 

 

Table 12 The most abundant litter types on conventionally surveyed sections of beach near 
Sisimiut on Greenland. Numbers in rectangular brackets give OSPAR beach litter 
type IDs. 

OSPAR beach 
litter type 

Arithmetic 
mean [-] 

Standard deviation [-] Percentage of total 
abundance [%] 

Coefficient of variation 
[%] 

Plastic 
fragments 
2.5 cm – 50 cm 
[461] 

23.3 22.1 26.7 94.5 

Shotgun 
cartridges [43] 

10.4 5.1 11.9 48.6 

String and 
filaments [322] 

5.9 6.9 6.8 117.1 

String and cord 
<1 cm; not 

4.8 3.6 5.4 76.4 
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OSPAR beach 
litter type 

Arithmetic 
mean [-] 

Standard deviation [-] Percentage of total 
abundance [%] 

Coefficient of variation 
[%] 

from dolly 
ropes or 
unidentified 
[321] 

Strapping 
bands [39] 

4.8 2.8 5.4 59.5 

Rope >1 cm 
[31] 

4.0 2.0 4.6 50.0 

Styrofoam 
[other items] 

3.9 4.5 4.5 114.3 

Other wood 
<50 cm [74] 

3.4 3.6 3.9 104.9 

Tangled dolly 
rope [332] 

3.2 1.9 3.6 61.3 

Nets and pieces 
of net <50 cm 
[115] 

2.8 2.5 3.2 87.6 

 

Figure 29 Statistical Power for various reductions of total abundance of beach litter. Results 
were calculated by means of one-sided one-sample Wilcoxon rank sum tests using 
a significance level of 0.05. 

 
Source: Compiled by AE  
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4.3.2 Results and discussion of the drone survey 

4.3.2.1 Manual Screening 

The manual screening of the drone surveys performed in QGIS 3.16.6 resulted in litter 
abundances between 0 and 63 pieces for the monitored beach areas (Table 13). The manual 
screening of the drone footage took between 05:00 minutes and 30:00 minutes.  

Images from Kapp Mitra 2 were not compared to results applying the OSPAR method, because 
the monitoring and drone surveys had to be interrupted due to a polar bear sighting and exact 
boundaries of the study side necessary for comparison were not given. The area was screened 
anyhow as input for automatic detection and as reference for the satellite images. 

Density maps were calculated showing the spatial distribution of litter covering the monitored 
beaches and the surroundings. The density maps with grid size 1.2 x 1.2 m are shown in Figure 
30, Figure 31, Figure 32 and Figure 33. A further analysis of the manual screening was 
performed in 4.3.2.2. Additionally, Figure 30 shows the number of litter items found at Kapp 
Mitra in a 10 x 10 m grid. 

Table 13 Number of litter objects found by manual screening and in situ OSPAR monitoring 

Name of 
beach 

Time for 
screening 

Number of 
litter items 

Number of 
plastic objects 

Number of 
litter items 

OSPAR 

Number of 
plastic litter 
items OSPAR 

Kapp Mitra 1 15 min 15 11 57 33 

Kapp Mitra 2  

Nuuk Day 1 20 min 43 35 273 232 

Nuuk Day 2-1 10 min 32 24 162 107 

Nuuk Day 2-2 5 min 10 9 130 113 

Nuuk Day 3 5 min 0 0 11 10 

Sisimiut Day 4 30 min 63 55 325 316 

Sisimiut Day 5 20 min 10 38 251 251 
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Figure 30 Density map of area coverage and number of plastic litter objects at Kapp Mitra 

 
A) Density map of study area Kapp Mitra (1 and 2) with the area covered by plastic items in a 1.2 x 1.2 m grid. B) Density 
map of number of plastic items found at Kapp Mitra area in a 10 x 10 m grid. Marked in red is the area monitored by the 
OSPAR method. Source: Compiled by BCSH 
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Figure 31 Density map of area coverage of plastic litter on the study sites around Nuuk 

 
A), B), C) and D) show the beach segments of the study areas Nuuk Day 1, Nuuk Day 2-1, Nuuk Day 2-2, and Nuuk Day 3 
respectively. Marked in red is the area monitored by the OSPAR method. The density maps show the area covered by 
plastic items in a 1.2 x 1.2 m grid. Source: Compiled by BCSH 
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Figure 32 Density map of area coverage of plastic litter on the study side Sisimiut Day 4 

 
A), B), C) and D) are single beach segments of the same study area. Marked in red is the area monitored by the OSPAR 
method. The density maps show the area covered by plastic items in a 1.2 x 1.2 m grid. Source: Compiled by BCSH 
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Figure 33 Density map of area coverage of plastic litter on the study side Sisimiut Day 5 

 
A) and B) are single beach segments of the same study area. Marked in red is the area monitored by the OSPAR method. 
The density maps show the area covered by plastic items in a 1.2 x 1.2 m grid. Source: Compiled by BCSH 

For Sisimiut, a comparison between the objects found during the manual screening and the 
objects which were measured in the field via GNSS receiver was performed. A total of 112 and 
55 objects were measured at Sisimiut Day 4 and Sisimiut Day 5, respectively. During the manual 
screening 44.64% (Sisimiut Day 4) and 54.55% (Sisimiut Day 5) of those objects could be 
detected (Table 14). Figure 34 and Figure 35 show the spatial distribution of the objects that 
were found with both methods and the litter objects missed during the manual screening. 
Photos of all objects measured via GNSS receiver can be found in the appendix D.1 and D.2. with 
an indication whether they were also detected during the manual screening of the drone 
imagery. 
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Figure 34 Spatial distribution of the objects marked via GNSS receiver, and the objects found 
during the manual screening on the study site Sisimiut Day 4 

 
Bag: 104; buoy: 30; bottle: 83,105,112,120; brush: 76; container: 20, 44, 80, 84, 88 ,103; cup: 98, foam: 62, 102; foil: 41, 71, 
75, 110; food container: 4, 58, 85, 121; lid: 31; net: 25; plastic fragment: 6, 21, 26, 28, 50, 82, 93; plastic other: 42, 101; 
rope: 12, 16, 36, 43, 49; shotgun: 5, 11, 14, 22, 24, 57, 68, 70, 81 ,89, 107; strapping band: 32, 118; string & filament: 18, 37, 
69, 90, 119; 89; styrofoam: 23, wood: 7, 8, 79. Source: Compiled by BCSH 



 

90 
 

Figure 35 Spatial distribution of the objects marked via GNSS receiver, and the objects found 
during the manual screening on the study site Sisimiut Day 5 

 
Foil: 11, 14, 22, 30; food container: 39; lid: 31; rope: 4, 32, 37; shotgun: 16, 28, 34, 35 ,41, 43, 48, 49, 52, 56; strapping band: 
20; string & filament: 26, 50; tube: 17, 47. Source: Compiled by BCSH 

Table 14 Comparison between GNSS measurement of objects and the manual screening 

Study Area Objects marked 
with exact 
geolocation via 
GNSS receiver 

Objects marked 
during the manual 
screening of the 
drone footage 

Percentage of the objects 
found during the manual 
screening compared to those 
marked via GNSS receiver 

Sisimiut Day 4 112 50 44.64% 

Sisimiut Day 5 55 30 55.55% 
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4.3.2.2 Statistical Analysis 

We compared the numbers of litter objects found within the same defined areas during the 
OSPAR and drone surveys and calculated the percentage of objects found on drone footage per 
area. Including all found objects, also of wooden material, a maximum of 24%, mean of 14.8%, 
median of 15.8% and minimum of 0% of objects was found on aerial images (Figure 36 A, n = 8 
different locations). When wooden objects were excluded a maximum of 17.5% were found 
(Figure 36 B). 

Figure 36 Percentage of litter objects found within distinct areas during drone surveys (n = 8 
different, independent locations). A: all objects, including wood. B: only litter 
objects that were not classified as wood. 

 
Source: Compiled by BCSH 

The size-distribution of litter objects was strongly right-skewed with few objects of large size 
(>1 m²), which is reflected in the deviation of median and mean values (Table 15). Excluding 
objects that were not classified as plastic, as well as objects of a size >1 m² reduced this margin. 

 

Table 15 Size distribution of the litter objects found on the drone footage. The table lists the 
minimum, median, mean, and maximum size in cm² of all objects, only plastic 
objects and plastic objects smaller than 1 m². 

Data Minimum size 
[cm2] 

Median size 
[cm2] 

Mean size [cm2] Maximum size 
[cm2] 

All litter 19.9 392.3 4563.3 1,733,736.8 

Only plastic 
litter 

19.9 262.7 924.7 47,541.6 

Only plastic 
<1 m2 

19.9 223.6 616.2 9,192 

 

Plotting the size distribution for each colour of the plastic litter that was found at least 20 times 
showed a very similar right-skewedness for all four colours (Figure 37). Only white plastic 
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objects showed a different size distribution with a higher median than the other colours (blue = 
161.10 cm²; red = 127.29 cm²; white = 372.74 cm²; yellow = 161.57 cm². 

Figure 37 Boxplots showing the distribution of object size (as area [cm²]) for each colour 
category of plastic litter objects found on drone footage. 

 
Source: Compiled by BCSH 

When testing for effects of the objects’ size and colour on the likelihood for the type to be 
identified, the initial saturated model showed very high VIFs (Area = 21.72, Colour = 77.59, 
602.79 = Area*Colour). According to Zuur et al. (2010) we thus removed the parameter with the 
highest VIF value. Reduced models with area and colour as well as area alone as explanatory 
variables had very similar AICs with ∆AIC <2, so they were considered equally fitting (see E.30). 
The model including area (highly significant) and colour (non-significant) was chosen for 
presentation, plotting the effect of the size of the object [cm²] on whether the type of litter could 
be identified for each colour found (Figure 38). Large object size favours type-identification 
significantly, but this effect is similar for the different colours.   

 

Table 16 Model results estimating the likelihood for a plastic litter object’s type to be 
identified from drone footage. 

Parameter Chi-squared df p VIF 

Area [cm] 28.10 1 1.15e-07*** 1.34 

Colour 4.31 3 0.23 1.34 

Results of an analysis of variance (ANOVA) of a binomial generalised linear regression with a logit link function are 
shown. The variance inflation factor (VIF) was computed to avoid multi-collinearity. Asterisks indicate significance (* 
p<0.5; ** p<0.01; *** p<0.001). 
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Figure 38 Effects of size (area [cm²]) and colour on the likelihood of a plastic litter object’s 
type to be identified from drone footage. 

 
The blue line represents the regression line of the binomial model. Confidence bands are shown as shaded grey area. 
Source: Compiled by BCSH 

Regarding the effects of the objects’ size and colour on the likelihood for a plastic object to be 
identified as litter with certainty, the initial full model showed very high VIFs (VIF Area = 8.81; 
VIF Colour = 4.66, VIF area*colour = 24.55). Thus, the model was reduced by the term with the 
highest VIF value. Reduced models with area and colour as well as area alone as explanatory 
variables had very similar AICs with ∆AIC <2, so they were considered equally fitting (see E.3). 
The model including both parameters, area, and colour, but no interaction term resulted to be 
the best fitting one by AIC (see 0). Therefore, it is displayed here in Figure 39. Similar to type-
identification, large object sizes increase the likelihood of certain classification significantly. 
However, also the colour of the object has a significant effect with white objects generally less 
likely classified as litter with certainty, while blue and red objects showing the highest 
likelihoods. 

Table 17 Model results estimating the likelihood for a plastic litter object to be identified as 
such with certainty. 

Parameter Chi-squared df p VIF 

Area [cm] 48.98 1 2.58e-12*** 1.34 

Colour 24.69 3 1.793e-05*** 1.34 

ANOVA results of a binomial generalised linear regression with a logit link function are shown. The variance inflation 
factor (VIF) was computed to avoid multi-collinearity. Asterisks indicate significance (* p<0.5; ** p<0.01; *** p<0.001). 
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Figure 39 Effects of size (area [cm²]) and colour on the likelihood of a plastic litter object to 
be identified as such with certainty. 

 
The blue line represents the regression line of the binomial model. Confidence bands are shown as shaded grey area. 
Source: Compiled by BCSH 

4.3.2.3 (Semi-) Automatic classification 

(Semi-) Automatic classification was applied for the drone surveys on Greenland and Svalbard 
and the results were compared in terms of their respective Overall-, User- and Producer- 
Accuracy. For Greenland the best OA was 90.6% and 85.8% on Svalbard, both applying RF v3. 
The highest User- and Producer- Accuracy were reached with 95.2% and 82.9% for Greenland 
and 76.2% and 65.3% for Svalbard respectively (Table 18and Table 19). To obtain the best 
classification results, different classifier and feature spaces were tested for Greenland.  

The results vary between 62.5% and 90.6% for Overall- 52.6% and 95.2% for Producer’s- and 
25.4% and 82.9% for User’s Accuracy (Table 18). The PA of 95.2% was reached applying the 
heigh weighted NN indicating a possible overfitting of the plastic class which is confirmed by its 
corresponding UA of only 40.6%. In general, the different classifier showed comparable results 
for the single scenarios. Comparing the different scenarios, v3 achieved the highest OAs for all 
classifiers. The classification results were furthermore compared to the manual screening of the 
drone footage in terms of the area covered by litter resulting in an area classified as plastic up to 
10 to 2000- times higher for the RGB input and up to 40 to 425- times for VIR input (Table 18). 
The highest overestimation of plastics occurred for NN with height class weighting, confirming a 
strong overfitting for this scenario. 
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Table 18 Classification Accuracy Greenland 

 Accuracy of plastic detection Proportion of area covered by Plastic [%] 

 OA 
[%] 

PA Plastic 
[%] 

UA Plastic 
[%] 

Nuuk 
Day 1 

Nuuk 
Day 2-1 

Nuuk 
Day 2-2 

Nuuk 
Day 3 

Sisimiut 
Day 4 

Sisimiut 
Day 5 

Manual Screening of drone images 0.1 0.1 0.1 0.06 0,04 0.04 

RF RGB v1 75.6 54.0 63.0 6.3 2.7 7.1 2.5 18.3 6.4 

SVM RGB v1 77.3 52.6 70.3 5.1 1.0 5.5 1.6 20.3 5.6 

NN RGB v1a 78.0 52.8 67.2 3.0 2.9 1.8 2.5 46.1 4.7 

v1b 77.3 52.8 67.7 8.3 10.7 10.1 10.0 62.3 10.7 

v1c 62.5 92.6 25.4 33.3 46.0 50.9 45.6 86.6 32.8 

RF VIR v2 89.6 67.8 82.9 8.6 7.0 5.6 7.5 4.2 10.1 

v3 90.6 72.4 81.5 4.3 5.4 5.4 6.7 4.3 7.5 

SVM VIR v2 89.5 64.0 81.6 9.7 8.2 5.5 9.5 5.6 11.2 

v3 90.4 72.0 79.8 5.5 6.8 6.0 5.8 7.7 8.3 

NN VIR v2a 90.1 72.0 79.5 9.0 7.9 8.1 11.4 4.2 10.9 

v2b 88.1 83.6 62.5 17.6 22.6 17.4 19.4 9.6 19.2 

v2c 79.8 95.2 40.6 27.5 42.5 33.5 32.7 15.4 27.0 

v3a 89.9 71.6 76.3 7.6 8.0 6.8 6.6 4.4 9.0 

v3b 84.5 89.6 48.6 10.5 19.5 16.1 18.4 8.6 15.7 

v3c 87.9 84.0 62.4 17.2 29.4 20.1 17.6 9.6 17.5 

OA: Overall Accuracy, UA: User’s Accuracy and PA: Producer’s Accuracy.  
v1: RGB with colour space, v2: VIR with spectral indices, v3: VIR with spectral indices and colour spaces 
NN: a: no weight on single classes, b: medium weight on plastic class, c: height weight on plastic class 
In red: highest values for OA, UA, and PA 
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Table 19 Classification Accuracy Svalbard 

 Accuracy of plastic detection 

 OA [%] PA Plastic [%] UA Plastic [%] 

RF RGB v1 78.6 64.0 76.2 

RF VIR v2 83.8 63.3 69.3 

v3 85.8 65.3 74.8 

OA: Overall Accuracy, UA: User’s Accuracy and PA: Producer’s Accuracy. 
v1: RGB with colour space, v2: VIR with spectral indices, v3: VIR with spectral indices and colour spaces 
In red: highest values for OA, UA, and PA 

For a better understanding of potential misclassifications, confusion matrices were created. The 
results showed that the highest misclassification of plastics occurred with rocks and wood (F.1-
F.18). Misclassifications occurred in either way, plastic items being falsely assigned to the class 
rocks or wood and rocks or wood falsely assigned to the class plastic. Depending on the beach 
environment, the misassignments of those classes had a greater impact on the overall 
performance. 

To understand potential sources of misassignments of the three critical classes, we evaluated the 
reference data sets and extracted reflectance values, indices, and colour spaces. In Figure 40 the 
average reflectance of the different classes for Greenland are shown. The average value of plastic 
does not overlap with any other class. To see the distribution of reference data in more detail, a 
density function of the reflectance of plastic, rocks and wood is shown as most misclassification 
occurred in those classes (Figure 41, Figure 42). In contrast to Figure 40, a high overlap of all the 
spectral bands can be observed. Figure 43 to Figure 45 show a similar pattern for the applied 
indices and colour spaces with high overlaps between the classes Those overlaps may have led 
to the difficulties of the machine- and deep learning algorithms to distinguish between those 
three classes. A similar pattern of overlap between plastic, rock and wood was observed for the 
reference data of Svalbard (G.1 to G.6). 

A comparison between the average reflectance values from the reference data set with the 
reflectance of the geo-referenced in situ plastic objects was done in Figure 46 and Figure 47. The 
reflectance of the in-situ points confirmed the observed wide range of reflectance values for 
plastic objects. 
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Figure 40 Average reflectance of input classes from the reference data of Greenland 

 
Class snow was excluded for visualization as its reflection value for all wavelength is outside the y-axis range used in this 
visualization. It was set to better display the differences in pattern of the other classes. Source: Compiled by BCSH 
 

Figure 41 Density functions of the reflectance extracted of the reference data on Greenland 
for wavelengths of 475, 560, 668, 717 and 842 nm. 

 
Source: Compiled by BCSH 
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Figure 42 Density functions of the applied indices extracted of the reference data on 
Greenland 

 
Source: Compiled by BCSH 

Figure 43 Density functions of HSV colour space extracted of the reference data on Greenland 

 
Source: Compiled by BCSH 
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Figure 44 Density functions of LAB colour space extracted of the reference data on Greenland 

 
Source: Compiled by BCSH 

Figure 45 Density functions of YcBcR extracted of the reference data on Greenland 

 
Source: Compiled by BCSH 



 

100 
 

Figure 46 Comparison of the reference data set with the in situ geo-referenced plastic objects 

 
Comparison of reflection values of plastic objects for Sisimiut Day4. Source: Compiled by BCSH 

Figure 47 Comparison of the reference data set with the in situ geo-referenced plastic objects 

 
Comparison of reflection values of plastic objects for Sisimiut Day5. Source: Compiled by BCSH 
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To visually compare the distribution of plastics between the (semi-) automatic classification and 
the manual screening, density maps were created for all surveys on Greenland (Figure 48 to 
Figure 51). For the (semi-) automatic classification the results of RF v3 were used as they 
reached the highest OA. The created density maps confirm the high overestimation of plastic 
classifications observed in Table 18. Especially areas covered by rocks and wood show high 
densities of plastics for RF classifications while areas of vegetation, water, and sand show more 
accurate results. 

Figure 48 Density map of area coverage of plastic litter from manual screening and RF v3 

 
A) and C) Nuuk Day 1 manual screening of drone images and RF v3, respectively 
B) and D) Nuuk Day 2_1 manual screening of drone images, D and RF v3, respectively. 
Raster cells with density 0 – 0.1 were excluded for C) and D) for better visual comparison. Source: Compiled by BCSH 
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Figure 49 Density map of area coverage of plastic litter from manual screening and RF v3 

 
A) and C) Nuuk Day 2_2 manual screening of drone images and RF v3, respectively 
B) and D) Nuuk Day 3 manual screening of drone images, D and RF v3, respectively. 
Raster cells with density 0 – 0.1 were excluded for C) and D) for better visual comparison. Source: Compiled by BCSH 
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Figure 50 Density map of area coverage of plastic litter from manual screening and RF v3 

 
A) and B) Sisimiut Day 4 manual screening of drone images and RF v3, respectively 
Raster cells with density 0 – 0.1 were excluded for B) for better visual comparison. Source: Compiled by BCSH 
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Figure 51 Density map of area coverage of plastic litter from manual screening and RF v3 

A) and C) Sisimiut Day 5-1 manual screening of drone images and RF v3, respectively 
B) and D) Sisimiut Day 5-2 manual screening of drone images, D and RF v3, respectively.
Raster cells with density 0 – 0.1 were excluded for C) and D) for better visual comparison. Source: Compiled by BCSH

4.3.2.4 Discussion drone survey 

The aim of this study was the evaluation of remote sensing techniques for beach litter 
monitoring in the Arctic with a focus on macro litter. 

Drone surveys were conducted to acquire high resolution RGB and VIR imagery to perform a 
manual screening and to test machine learning approaches for (semi-) automatic classifications. 
The results of the manual screening were furthermore used as reference data for the satellite 
imageries. For a ground truthing of the litter abundance, OSPAR beach litter monitoring was 
applied on all survey areas.  
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During the manual screening between 0 and 17.5% of plastic items could be found compared to 
those found during the OSPAR monitoring. This value is lower compared to most of the previous 
studies using drone footage for litter detection which achieved a detectability between 18% 
(Merlino et al., 2020) and up to almost 100% (Andriolo et al., 2020; Escobar Sánchez et al., 2021; 
Gonçalves et al., 2020b) (Table 20). Only Lo et al. (2020) described a lower recovery rate with 
3.7%, but these authors separated litter objects into different size classes. The detectability of 
3.7% was achieved for objects between 2.5 - 5 cm. 

For the low recovery rates in this study, three potential reasons were identified and will be 
discussed in the following: The litter size-distribution, the beach environment, and the ground 
sample distance (GSD) of the drone footage. 

The litter size distribution has a great impact for litter detectability with larger objects being 
easier to spot. Martin et al. (2018) and Merlino et al. (2020) described that “smaller items” 
(<4 cm) had a higher probability to not be found in their respective studies. This was confirmed 
by Lo et al. (2020) who described increasing detection rates for an increase in object size. 
Therefore, depending on the litter size distribution at the study site, the total proportion of 
detected litter objects can vary significantly between different sites. This might be one reason 
why Andriolo et al. (2020) found almost 100% of litter objects whereas Merlino et al. (2020) 
only detected around 18 – 20% even though the GSD used by Andriolo et al. (2020) was coarser 
and the beach environment was more complex. Looking into the objects found by Andriolo et al. 
(2020), over 50% were assigned to classes which have typically a size >10 cm and are therefore 
easier to spot. For this study, only an approximate estimation of litter size distribution can be 
given as the OSPAR monitoring does not include a size measurement of objects but only gives 
size ranges for some categories. At the study sites at Kapp Mitra (Svalbard), Nuuk (Greenland) 
and Sisimiut (Greenland) plastic fragments (2.5 cm - 50 cm) were the most or second most 
frequent plastic litter category with most objects being confirmed to be <10 cm by the infield 
surveyors. Other abundant litter types were Styrofoam, strapping bands, strings and cords, string 
and filaments, nets and net rests <50 cm, caps and lids and Shotgun cartridges (Table 10, Table 11 
and Table 12) which could also be confirmed to be mainly of a size <10 cm. The dominance of 
small objects might have led to the relative low total detectability compared to other studies. 
This can be confirmed by looking into the size distribution of the manual screening where small 
objects seem to be underrepresented. Large objects (>10 cm) make up between 70% and 80% of 
the plastic objects found during the manual screening. 

A second parameter impacting the detectability of beach litter is the beach environment. This 
includes the type of the beach (substrate: sand or gravel), its homogeneity (e.g., occurrence of 
vegetation, wood, or rocks) and the resulting potential of litter to be buried or hidden. The more 
heterogenic a beach is, the more difficult it is to distinguish litter objects from the background. 
The bright colours which make it easy to identify litter objects might not be dominant over 
vegetation or coloured pebbles. White, black, and transparent objects might be confused by 
rocks, pebbles, or wood. Vegetation, rocks, or wood might furthermore cover or hide litter 
objects on the drone image (Merlino et al., 2020). Moreover, snow coverage can burry objects 
and make an identification of white or transparent litter difficult (Figure 53). Most of the 
previous studies were performed on sandy beaches (Escobar Sánchez et al., 2021; Falatti et al., 
2019; Gonçalves et al., 2020b; Martin et al., 2018 and Merlino et al., 2020) (Table 20). As an 
exception, Lo et al. (2020) studied both, sandy and gravel beaches. Information about the beach 
homogeneity and the potential of objects being hidden or buried are difficult to retrieve from 
previous studies if not mentioned explicitly. Anyhow, if available the orthomosaics and pictures 
of the study area give a first impression of the homogeneity of the beaches (Figure 52, Andriolo 
et al., 2020; Falatti et al., 2019, Gonçalves et al., 2020b; Martin et al., 2018).  

Manual screening of drone footage
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Figure 52 Overview of the beach environment from previous studies applying manual 
screening of UAV imagery 

 
1) Escobar Sánchez et al., 2021; 2) Merlino et al., 2020, both licensed under CC BY 4.0 

Figure 53 Examples of the beach environment on Svalbard and Greenland 

 
1) Area attached to the beach of Kapp Mitra, Svalbard 2) Beach at survey area of Nuuk Day 1, Greenland 
3) Buried or hidden litter items at Sisimiut Day 4 and Sisimiut Day 5, Greenland. Source: Compiled by BCSH 

The beaches monitored in the studies of Escobar Sánchez et al., (2021), Falatti et al., (2019) and 
Gonçalves et al., (2020b) appear to be mostly homogeneous with little patches of vegetation. The 
beaches monitored by Martin et al. (2018) show a higher abundance of vegetation, whereas 
Andriolo et al. (2020) and Merlino et al. (2020) studied the most heterogeneous environment 
with high amounts of vegetation and driftwood (Figure 52). Lo et al. (2020) does not give an 
overview of the beaches but described one beach with gravel and pebbles and the second beach 

1) 2) 

3) 

https://creativecommons.org/licenses/by/4.0/
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as homogeneous with mostly sand as beach substrate. Comparing the litter detectability, the 
studies with gravel beaches and more heterogeneous beach environments had low detection 
rates (Martin et al., 2018; Merlino et al., 2020 and Lo et al., 2020). Covering both, sandy and 
gravel beaches, Lo et al. (2020) showed that sandy beaches had a higher detection rate than 
gravel beaches. An exception was given by Andriolo et al. (2020) who could detect almost all 
objects, even though the beach environment was complex. A possible reason of the high 
detectability in Andriolo et al. (2020) is the impact of the litter size distribution and the high 
number of large items. In this study, a total of seven Arctic beaches (including various beach 
segments) were monitored, including five gravel and two sandy beaches. The beach 
environment of all study sites was defined as heterogeneous with high abundances of driftwood, 
rocks, and vegetation and with some snow coverage on the two sandy beaches close to Sisimiut 
(Figure 53). Comparing the beach types, the two sandy beaches were among those beaches with 
the highest detection rates (15% and 17.4%). The low detectability of the two sandy beaches 
compared to studies with similar beach substrates, might be influenced by the snow coverage, 
the litter size distribution, and the GSD. Figure 37 shows that from the plastic items found on the 
drone image, white items had a different size distribution compared to coloured items showing a 
two to three times larger median object size than white objects. Assuming no colour-based 
difference in the actual size distribution, white or transparent objects were difficult to identify, 
especially over bright backgrounds such as rocks and snow. This could be confirmed at the study 
site of Sisimiut Day 4, where 50% of the objects which were measured via GNSS, and which 
could not be found during the manual screening, were white or transparent. The complex 
background with vegetation and coloured pebbles might furthermore have decreased the 
detectability of coloured objects and influenced the overall detection rate.  

Beside the litter size distribution and the beach environment, the GSD of the drone image has the 
biggest impact on the detectability of beach litter as it defines the number of pixels per object. A 
higher GSD (lower GSD value) decreases the minimum size of an object sufficient to be 
identified. Items with roughly ten times the GSD can be visually detected on RGB imagery (Moy 
et al. 2018, Pichel et al. 2012, Garcia-Garin et al. 2019). The GSD is the only of the above-
mentioned parameter that can be directly defined by the operator as it depends on the chosen 
sensor and the flight altitude. Previous studies used a GSD between 0.18 cm (Merlino et al., 
2020) and 1.2 cm (Andriolo et al., 2020) (Figure 52). Comparing the detectability of the 
abovementioned studies, the detection rate did not always increase with a decrease of GSD 
values. This confirms the impact of additional parameters, such as the litter size distribution and 
the beach environment. To evaluate the impact of the GSD, Lo et al. (2020) compared different 
GSD settings for the same beaches and confirmed that lower GSD values result in an increase in 
detectability. Anyhow, the lowest GSD value may not always be the best choice, as a decrease in 
the GSD value requires a lower flight altitude and results in less area coverage. In addition, fixed-
wing drones, which are typically used for large area monitoring, are limited in their minimum 
flight altitude. As fixed-wing drones require a minimum flight speed to be stable and as the 
shutter speed is limited by the sensor, only the flight altitude can be adjusted to ensure that the 
footprint of the images is sufficient to not produce any data gaps. Multicopter can adjust the 
flight speed and therefore also operated at very low altitudes but have typically lower area 
coverage. Therefore, they are favourable for experimental purposes but not for large-scale 
applications. The previous studies of manual screening of beach litter all applied a Multicopter 
focusing on small test sites. Only Martin et al. (2018) describes a large-scale application along 
the Saudi-Arabian coastline. As for litter detection in the Arctic, time and area coverage are 
crucial, for this study it was decided to use a WingtraOne fixed-wing drone. The minimum GSD of 
the applied drone-sensor configuration was 1.4 cm for the RGB sensor. Assuming a possible 
detectability of objects with a minimum size of ten times the GSD, it was expected to detect 
mainly litter items >14 cm. Nevertheless, due to the shape and colour of plastic items, also 
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smaller items were expected to be found. Therefore, one goal of this study was to test whether a 
GSD of 1.4 cm is still sufficient to reflect the litter distribution on Arctic beaches. The results of 
the manual screening showed that this is not the case, and a decreased GSD will be necessary for 
future applications. As described above, the environmental background made the colour-based 
detection of small items difficult. Moreover, comparing the detection rate of this study with the 
results of Andriolo et al. (2020) who used a similar GSD, shows huge differences which can be 
addressed to differences in the litter size distribution.  

Table 20 Overview of the litter found by manual screening of drone footage and the 
corresponding litter size distribution, the beach environment, and the GSD 

 Plastic litter found 
by manual 

screening compared 
to ground truthing 

Size 
distribution 

Beach 
environment 

GSD [cm] 

This study 0 - 17.5% Majority of 
objects 
<10 cm 

gravel beach and 
sandy beach 

1.4 

Andriolo et al., 2020 “non-worthy number 
missed” 

~ 50% of 
plastic items 
were bottles, 
bags, and 
octopus pots  

coastal dune area 1.2 

Escobar Sánchez et al., 
2021 

87.5 - 99% NA sandy beach 0.27 

Falatti et al., 2019 87.8 - 95.9% Between 2 – 
35% of items 
were <5 cm 

sandy beach 0.44 

Gonçalves et al., 2020b 98% NA sandy beach and 
partly dune 

0.55 

Lo et al. 2020 3.7 - 100% Five size 
classes from 
2.5 – 5 cm to 
30 – 50 cm 

gravel/ pebbles and 
sandy beach 

0.2 – 0.6 

Martin et al., 2018 61.8% NA sandy beach 0.5 – 0.7 

Merlino et al., 2020 18 - 20% NA sandy beach 0.18 

NA: No information regarding litter size distribution 

Further minor factors that can impact the detectability are the daytime of the acquisition, 
weather conditions, and the user performing the manual screening. Lo et al. (2020) and Martin 
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et al. (2018) suggested to conduct surveys around noon to minimize shadow effects which can 
have a negative effect on the detectability. In the Arctic, the avoidance of shadow effects is 
challenging as the sun angle remains low throughout the entire day. Additionally, weather 
conditions can have an impact on the image’s film speed (ISO) and therefore the image quality. 
In remote areas like the Arctic, it is not feasible to expect perfect conditions in terms of daytime 
and weather condition as the time for monitoring is normally limited. For the manual screening, 
User’s, being familiar with the study site and the expected litter items, are favourable as they will 
be more likely able to identify the litter items on the drone images. 

Beside the detectability, also the time which was needed for the drone surveys and the manual 
screening was evaluated. The duration of the drone surveys varied between 20 and 60 minutes, 
including approximately 15 minutes for the drone setup. The data processing and preparation 
was mainly automatic and took around 01:30 hour of manual working time per survey. Large 
surveys, like those performed at Kapp Mitra, could cover up to fifty 50 m transects per hour, 
resulting in a working time (drone survey and data processing) of around 3 minutes per 50 m 
transect, if all transects are monitored. Smaller areas, covering a single 50 m transect still need a 
minimum of 20 minutes for the drone survey and around 1,5 hours for the data processing. The 
manual screening of the 50 m transects took between 5 to 20 minutes, depending on the beach 
background and the number of litter items. Including the drone survey, the data processing and 
the manual screening, the total time for a drone-based monitoring of a 50 m transect could vary 
between 8 and 130 minutes (Table 21).  

Table 21 Time required for a drone-based monitoring of beach litter 

Monitored beach Drone survey  Data 
processing  

Manual 
Screening 

Total OSPAR 

50 m transect 01:10 – 
20:00 min 

01:50 – 
90:00 min 

05:00 – 
20:00 min 

08:00 – 
130:00 min 

90:00 – 
180:00 min 

 

In the Arctic, the OSPAR monitoring was performed by two to three people who took between 
30 minutes and one hour per 50 m transect, resulting in a total working time between 90 and 
180 minutes. Compared to the calculated time for a drone-based monitoring, the OSPAR method 
requires up to 22-times longer for large areas but could be faster for small areas. The total time 
for a drone-based litter monitoring can be reduced by a successful integration of (semi-) 
automatic classification and detection approaches, saving the time for the manual screening. 
Martin et al. (2018) described that their drone surveys were 39-times faster compared to a 
standard in situ approach, but without including the time required for the manual screening. As 
the beaches in the Arctic are often remote, the time at the beach can be limited. Therefore, a 
faster beach coverage can already be of high value. 

After all, the manual screening of drone images is a promising method for beach litter detection 
as already shown in several studies (e.g. Escobar Sánchez et al., 2021; Falatti et al., 2019; 
Gonçalves et al., 2020b and Lo et al. 2020). Drone surveys allow a fast, non-intrusive acquisition 
of large and remote areas. Furthermore, they can give information about the spatial distribution 
and the impact of beach morphology as well as about the litter size distribution. However, the 
environmental conditions and the requirements of a large area coverage and a short available 
acquisition time, make an implementation in the Arctic challenging. The results of this study 
show that a GSD of 1.4 cm is not sufficient for the detection of small objects. To meet up with the 
complex environmental conditions and the litter size distribution, a sub-centimetre GSD is 
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recommended. Yet even applying a GSD of 0.18 cm to 0.4 cm (Merlino et al., 2020 and Lo et al., 
2020 respectively), the authors described difficulties in litter detection for objects <10 cm. 
Besides, further limitations must be considered. To conduct a drone survey in the Arctic, a drone 
pilot is required in remote areas and in case the litter should not only be monitored but also 
collected, the beaches must be accessed in person neglecting one of the major advantages of 
drone surveys. Additionally, the detectability of litter will always be limited for buried or 
covered litter objects and an information about the litter weight cannot be given straight 
forward. To match the requirement of fast acquisitions of large areas, fixed-wing drones are 
favourable. Professional fixed wing monitoring drones like the WingtraOne and the senseFly 
eBee achieve up to date only GSDs of 0.7 - 1 cm with their sensors, which might not be sufficient 
to record small litter items. This can change in the future with the integration of new sensor 
technology, which is already available in the very high price sector (e.g. PhaseOne sensors). 
Alternatively, the implementation of citizen science with an application of low-cost multicopter 
could be an option for a smaller-scale integration of Arctic beach litter monitoring. Especially an 
integration in existing cruise tours or research programs could be of interest. The area around 
Nuuk showed that beside the long coastline, only a small part of it was suitable for beach litter 
detection and could therefore also be covered by a low-cost multicopter. A well-defined 
operational framework could be developed and shared with the different parties. Drone surveys 
could be applied during existing cruise tours, university excursions or research programs and be 
collected and interpreted by experts afterwards. To match the Arctic requirements, such a 
framework is still needed to be developed. 

Besides, for evaluating the feasibility of the application of fixed wing drones for manual litter 
detection in the Arctic, the results of the manual screening were used as reference for the 
(semi-) automatic classification approaches of the multispectral UAV sensor as well as for the 
satellite imagery.  

(Semi-) automatic classification 

The advantages of drone applications for beach litter monitoring were already mentioned and 
discussed for a manual screening. One of the biggest advantages of drone surveys compared to 
traditional in situ methods, the large area coverage, also produces the challenge of screening 
huge amounts of data and images. On Greenland and Svalbard, a total number of 4201 RGB- and 
5364 VIR- images were collected covering a total area of around 100 ha per sensor. Multicopter 
flying on lower altitudes to achieve a higher GSD, would acquire even more images for the same 
area as the image footprint is smaller. A manual screening of large areas can be very time-
consuming resulting to be neither time- nor cost-efficient. Therefore, for a large-scale 
monitoring, an application of (semi-) automatic classification approaches is necessary. Several 
approaches have already been tested for beach litter detection like threshold methods (Bao et 
al., 2018), Maximum-Likelihood classifier (ML) (Bao et al., 2018; Escobar Sánchez et al., 2021), 
Random Forest (RF) (Escobar Sánchez et al., 2021; Gonçalves et al., 2020a; Gonçalves et al., 
2020b; Gonçalves et al., 2020c; Martin et al., 2018; Wolf et al. 2020), Support Vector Machine 
(SVM) (Escobar Sánchez et al., 2021; Wolf et al. 2020), K-nearest neighbors (KNN) (Gonçalves et 
al., 2020c), and Convolutional Neural Networks (Bak et al., 2019; Falatti et al., 2019; Gonçalves et 
al., 2020b; Papakonstantinou et al., 2021; Wolf et al. 2020). The above-mentioned studies used 
high resolution RGB drone imagery with a GSD between 0.2 cm (Wolf et al., 2020) and 3 cm (Bao 
et al., 2018). The classification approaches further varied between pixel-based, object-based, and 
tile-wise classifications. The performances of the classification approaches are summarized in 
Table 22. As mentioned in Goncalves et al. (2020a), a comparison between different classifiers in 
different studies has always to be taken with care, as factors like the beach environment, the 
number of the testing areas and the litter size distribution may have a bigger impact than the 
classification method itself. Bao et al. (2018) was amongst the studies with highest overall 
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accuracy (OA) even using the lowest GSD of all studies mentioned and a relatively simple 
classification approach. Here, the very homogeneous beach environment may have had a bigger 
impact than the GSD or the classifier. Beside the OA, which was just available in some of the 
mentioned studies, the UA (User’s Accuracy; also mentioned in some studies as sensitivity or 
Recall) and the PA (Producer’s Accuracy; also mentioned as precision or positive predicted value 
(PPV)) are used for accuracy assessment as well as the F-score. The F-score is a measure of the 
overall quality of a classifier and combines UA and PA: 

𝐹����� =  2 ∗ �� ∗ ��
�� � ��

  

It was used by the majority of the studies on automatic beach litter detection (Falatti et al., 2019; 
Gonçalves et al., 2020a, b, c; Martin et al., 2018; Papakonstantinou et al., 2021; Wolf et al. 2020).  

In this study, three classifiers were applied (RF, SVM and NN) using RGB and VIR imagery. The 
multispectral imagery was tested to determine whether the additional spectral information can 
compensate the low applied GSD values. The GSD of the two sensors was 1.4 cm and 3.4 cm for 
RGB and VIR respectively. The OA achieved with the RGB footage was between 62.5% - 78.6% 
with highest results for RF. The reached OA is comparable to the results of Escobar Sánchez et al. 
(2021) and Papakonstantinou et al. (2021) even though those studies used a GSD of 0.27 cm and 
0.5 cm respectively. The similar OA compared to Escobar Sánchez et al. (2021) who only used 
the RGB colour space, might be the result of an extension of the feature space by the HSV, CIE-
LAB and YcbCr colour spaces as previous applied in Gonçalves et al. (2020a, b, c). Bao et al. 
(2020) and Wolf et al. (2020) using a GSD of 1 – 3 cm and 0.5 cm respectively reached higher OA 
with up to 98% and 83% respectively. The achieved F-score in this study varied between 40% 
and 70% for the RGB imagery and is also comparable to the studies summarized in Table 22, 
being only slightly lower than the studies of Falatti et al. (2019), Gonçalves et al. (2020a, c), 
Papakonstantinou et al. (2021) and Wolf et al. (2020) who reached F-scores between 73% and 
81%. 

Comparing the performance on RGB and VIR imagery, in this study, the classifier using VIR 
outperformed those using RGB images with the highest OA of 90.6% against 78.6% and F-score 
of 77% against 70%. For both, the best results of OA and F-score were achieved using RF, but 
SVM showed similar results. Using a Neuronal Network (NN) with weighting, an overfitting of 
the model could be observed with very high PA and low UA values. The results on RGB and VIR 
imagery indicate that the feature space used for classification had a greater impact on the 
classification performance than the GSD, making the application of VIR sensors promising for the 
future. Anyhow, when looking at the actual classification maps, a huge overestimation of plastics 
could be observed in this study for both sensors. Despite the good statistical results, it was not 
possible to separate the different classes by their spectral information properly (Figure 40 to 
Figure 45). Especially the classes wood and rock were often misclassified as plastics. As those 
classes were much more abundant at the study sites than plastics, already a small percentage of 
misclassified rocks or wood could increase the number of pixels classified as plastic significantly. 
This emphasises again the strong impact of the beach environment on the classification 
performance. For VIR acquisitions, the weather conditions have also a major impact. Before and 
after each survey an image of a reference reflection panel is taken, to transform the recorded 
digital values into reflectance values. Therefore, the weather conditions (especially cloud 
coverage) should not change within a single survey as this could lead to corrupted reflection 
values and impact the classification results. Yet, if this can be assured, the reflectance values of 
VIR acquisitions allow for a transferability of the reference data and the models for spectral-
based classification approaches. In contrast, RGB images for colour-based classifications are 
highly weather and light-dependent and difficult to transfer.  
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This study confirms the great potential of (semi-) automatic classification approaches offering a 
method for a time- and cost- efficient large-scale detection of beach litter using drone imagery. 
The statistical approaches permit an evaluation of the performance of the classifier, and as the 
classification is user-independent, no previous expert knowledge of the litter types is necessary. 
However, the promising statistical results have always to be confirmed by the actual 
classification maps. Here, the results show that a strong overestimation of plastic occurs 
applying classification approaches that focus on the spectral characteristics alone. The feature 
spaces of the applied sensors were not able to distinguish between the occurring land cover 
classes. Therefore, the spectral coverage of the sensors must be extended, or other structural 
parameters have to be included. The application of an object-based classification could reduce 
the misclassification of the wood class but would require a better GSD. Image recognition 
methods are also promising, requiring a better GSD and a huge amount of training data. 
Furthermore, most studies so far only focused on litter detection and not litter type 
identification as performed with the OSPAR surveys. Among the above-mentioned studies, only 
Wolf et al. (2020) presented an approach for plastic type identification using image recognition 
techniques. For a future implementation into ongoing monitoring programmes, this is an 
essential step, which must be further investigated and developed, taking into account the 
required area coverage (limiting the GSD), the beach environment and the litter size 
distribution. 

The applied methods in this study were not sufficient for a litter type detection or identification 
mainly due to the limitations of the GSD and the complex beach environment. Nevertheless, the 
results give a first impression on VIR sensors for beach litter detection and recommendations 
for further drone-based litter monitoring in the Arctic. Due to the complex beach environments 
and the litter size distribution in the Arctic, a sub-centimetre GSD or an extension of the spectral 
coverage is recommended. The method with highest OA in this study was RF with comparable 
results to SVM. 

Table 22 Overview of the performance of different machine learning approaches for beach 
litter monitoring using drone imagery. 

 Litter found by (semi-) 
automatic detection 

Classifier 
used 

Beach 
environment 

Sensor GSD [cm] 

This study RGB OA: 62.5% - 78.6% 

PA: 52.6% - 92.6% 

UA: 25.4% - 70.3% 

F-score: 40% - 70% 

RF, SVM, NN gravel beach 
and sandy 

beach 

RGB 1.4 

This study VIR OA: 79.8% - 90.6% 

PA: 63.3% - 95.2% 

UA: 40.6% - 82.9% 

F-score: 57% - 77% 

RF, SVM, NN gravel beach 
and sandy 

beach 

VIR 3.4 

Bak et al., 2019 OA: 98% CNN Gravel and 
sandy beach 

RGB 0.4 
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 Litter found by (semi-) 
automatic detection 

Classifier 
used 

Beach 
environment 

Sensor GSD [cm] 

Bao et al., 2018 OA: 98.6% - 98.9% ML and 
Threshold 

Sandy beach RGB 1-3 

Escobar Sánchez 
et al., 2021 

OA: 25% - 74% 

PA: 0 - 100% 

UA:  0 - 11% 

Object-based 
ML, RF, SVM 

sandy beach RGB 0.27 

Falatti et al., 2019 PA: 12% - 69% 

UA: 25% - 100% 

F-score: 19% - 81% 

CNN sandy beach RGB 0.44 

Gonçalves et al., 
2020a 

PA: 53% - 77% 

UA: 62% - 74%  

F-score: 57% - 76% 

RF sandy beach 
and dune 

RGB 0.55 

Gonçalves et al., 
2020b 

PA: 65% - 71% 

UA: 55% - 70%  

F-score: 60% - 70% 

RF, CNN sandy beach 
and dune 

RGB 0.55 

Gonçalves et al., 
2020c 

PA: 61% - 70% 

UA: 67% - 78%  

F-score: 64% - 73% 

Object-based 
RF, SVM, KNN 

Sandy beach RGB 0.55 

Martin et al., 2018 PA: 40% 

UA: 8% 

F-score: 13% 

RF sandy beach RGB 0.3 - 0.5 

Papakonstantinou 
et al., 2021 

OA: 61% - 78% 

PA: 63% - 98% 

UA: 15% - 84% 

F-score: 28% - 77% 

Five different 
CNNs 

sandy beach RGB 0.5 

Wolf et al. 2020 OA: 83%** 

PA: 77%** 

UA:77%** 

F-score: 77%**  

CNN, SVM, RF Beach and 
riverine 
system 

RGB 0.2 
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The terms PA/ sensitivity/ recall and UA/ PPV/ precision were used as in the original publication  
OA: Number of correctly identified reference objects divided by total number of reference objects 
PA/ sensitivity/ recall of plastic: Number of correctly identified plastic objects divided by total number of reference plastic 
objects 
UA/ Positive predicted value (PPV)/ precision of plastic: Number of correctly identified plastic objects divided by the 
number of reference objects classified as plastic 
F–score: Two-times the product of UA and PA divided by the sum of UA and PA 
** Results for CNN classifier.  

4.3.3 Results and discussion of WV3 satellite imagery 

The spectral information of WV3 imagery was extracted from pixels covering plastics and the 
most common land cover classes (rock, sand, snow, vegetation water and wood). Plastic-Pixels 
were further divided by the area by which the pixels were covered with plastic. For all other 
classes, pixels with a class coverage of 100% were used. An overview of the number of pixels per 
class are shown in Table 23 and Table 24 for the WV3 multispectral imagery and the WV3 SWIR 
imagery, respectively. For the higher resolution multispectral imagery (1.2 x 1.2 m), 95% and 
74% of all identified Plastic-Pixels were covered by less than 5% of plastic for Svalbard and 
Greenland, respectively. Zero and five pixels were covered by more than 50% of plastic for 
Svalbard and Greenland, respectively (Table 23). For the SWIR imagery, only three pixels were 
covered by more than 10% of plastics, all identified on Greenland. 

 

Table 23 Numbers of pixels used to extract spectral information of WV3 multispectral 
imagery 

Material Pixel Coverage Svalbard (n pixel) Greenland (n pixel) 

Plastic 0 – 1% 604 120 

1 – 5% 336 127 

5– 10% 33 47 

10 – 20% 10 18 

20 – 30% 0 11 

30 – 40% 1 3 

40 – 50% 0 4 

50 – 60% 0 2 

60 – 70% 0 1 

70 – 80% 0 0 

80 – 90% 0 1 

90 – 100% 0 1 

Rock 100% >2000 >250 

Sand 100% - >1000 
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Material Pixel Coverage Svalbard (n pixel) Greenland (n pixel) 

Snow 100% >250 0 

Vegetation 100% >1000 >750 

Water 100% >8000 >8000 

Wood 100% >100 <50 

 

Table 24 Numbers of pixels used to extract spectral information of WV3 SWIR imagery 

Material Pixel Coverage Svalbard (n pixel) Greenland (n pixel) 

Plastic 0 – 1% 642 122 

1 – 5% 5 32 

5– 10% 0 4 

10 – 20% 0 2 

20 – 30% 0 1 

30 – 100% 0 0 

Rock 100% 250 100 

Sand 100% 0 150 

Snow 100% 50 0 

Vegetation 100% 150 100 

Water 100% 1000 1000 

Wood Not defined 30 15 

 

The extracted spectral information for Svalbard and Greenland is displayed as average values 
per extracted class in Figure 54 and Figure 55, respectively. As plastic pixels were mixed pixels, 
the spectral response was also displayed in terms of the plastic coverage (Figure 56 and Figure 
57). The reflection values and shape differed between the two study sites, because distinct 
methods for atmospheric correction were applied. Comparing the average spectral shape of all 
plastic pixels with the other classes, a strong similarity of plastic pixels to wood and vegetation 
pixels can be observed. As the plastic pixels had a relatively small plastic coverage, the other 
classes, mainly vegetation and wood, dominated the plastic pixels signal. This can be confirmed 
by Figure 56 and Figure 57, showing the different plastic coverage per pixels. The lower the 
plastic coverage was, the more similar the signal was to other classes but even within the highest 
plastic coverage the signal seemed to have a strong influence of vegetation. Anyhow, looking into 
the high plastic coverage, SWIR values are not always available, because the SWIR imagery was 
coarser than the multispectral WV3 product, and the plastic proportion was therefore too small. 
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Moreover, the variation within the classes is important to consider, to determine whether 
different classes can be separated spectrally. An overview is given in the appendix in H.1 and 
H.2. Both figures show a huge variance of reflectance values for the classes sand, rock, and plastic 
and plastic, rock and wood for Greenland and Svalbard, respectively. As the plastic coverage of 
pixels was very low, a comparison to the spectral pattern of plastic with its typical spectral 
features as described in Garaba et al. (2020) and shown in Figure 8 was not possible. A detection 
of beach litter at a sub-pixel scale was tested by spectral unmixing of WV3 imagery. The average 
spectral signal for each class was calculated to perform a spectral unmixing using the Rstoolbox 
library within R version 3.6.3. Previous studies showed the ability to detect floating marine litter 
on a sub pixel scale using Sentinel 2 satellite imagery with a plastic coverage of 30 – 55% 
(Biermann et al., 2020; Topouzelis et al., 2019). Sentinel 2 has a similar spectral coverage as 
WV3 imagery with 12 bands from visible to SWIR, but a resolution of 10 - 60 m. A sub-pixel 
detection of plastics over open water for objects even smaller, covering down to 5% of a pixel, 
was described by Garaba et al. (2018b) using hyperspectral imagery. In this study, the 
performed spectral unmixing of the reference data from manual drone screening was not able to 
detect the plastic coverage of the reference data. In contrary to floating marine litter, the 
background of beach environments is more complex (e.g. vegetation, sand, rocks, wood) and the 
litter size distribution on the study area was very low. When including SWIR imagery, the sub-
pixel size of 30 – 55% as described in Biermann et al. (2020) and Topouzelis et al. (2019) was 
not achieved for any pixel. Compared to Garaba et al. (2018b), the spectral coverage seemed to 
be insufficient for a sub-pixel detection down to 5%, also partly influenced by the complex 
background signals. 

The results of the WV3 imagery showed that beach litter detection with satellite imagery is still 
limited by its spatial resolution. Only large accumulations of litter seem to be detectable (Acuña-
Ruz et al., 2018). The litter size and the spatial distribution of litter on Arctic beaches were too 
low to be identified on WV3 imagery. A higher spatial resolution or a larger spectral coverage 
would be required to also detect lower litter accumulations on beaches from satellites. In future 
studies, spectral unmixing approaches for beach litter detection should be further tested for 
survey areas with very high litter abundances to determine the coverage of plastics that is 
required for a successful detection. The results of such an evaluation can then further be used to 
determine the resolution of satellite imagery needed to detect litter accumulations as found on 
Greenland and Svalbard. Another promising approach would be the evaluation of accumulations 
of driftwood as a proxy for high abundances of marine litter, as driftwood was detectable at WV3 
imagery. Beside the spatial resolution, the costs of commercial satellites are still limiting a large-
scale application (WV3: around $ 3500 for 100 km²). To benefit from the large area coverage of 
satellite imagery, the detectability of smaller accumulations of beach litter still needs to be made 
feasible and the costs of the data acquisition must be reduced. 
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Figure 54 Average spectral signal extracted from WV3 imagery on Svalbard 

 
Source: Compiled by BCSH 

Figure 55 Average spectral signal extracted from WV3 imagery on Greenland 

 
Source: Compiled by BCSH 
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Figure 56 Average spectral signal extracted from WV3 imagery on Svalbard for different 
plastic coverages 

 
SWIR reflectance values were not always available due to the coarser resolution. Source: Compiled by BCSH 

Figure 57 Average spectral signal extracted from WV3 imagery on Greenland for different 
plastic coverages 

 
SWIR reflectance values were not always available due to the coarser resolution. Source: Compiled by BCSH 
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5 Work package 4 
M. Schnurawa (BCSH) has participated in the Arctic Plastic Symposium in Reykjavik, Iceland (02 
to 04 March2021). He presented a scientific talk, which has been made permanently available 
for download by the organizer of the symposium. 

M. Schulz (AE) has participated in the Arctic Plastic Symposium in Reykjavik, Iceland (02 to 04 
March 2021). 

M. Schnurawa (BCSH) participated in the Nationales Forum für Fernerkundung und Copernicus 
2022, Berlin (21 to 23 June 2022) He presented a scientific talk about the results of AP3. 
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A Appendix 

A.1  Coordinates of OSPAR beach litter survey sites on Greenland, Svalbard, and Iceland. 

Beach name  ID  Longitude  Latitude  

Dagmar Island 
North St1  

GRL001  -17.5637 81.6864 

Henryland - 
East Greenland  

GRL002  -23.6400 69.6079 

Sand Island, 
Young Sund  

GRL003  -20.1526 74.2653 

Kap Mary, 
Young Sund  

GRL004  -20.1884 74.1656 

Clavering 
Island, Young 
Sund  

GRL005  -20.1714 74.2181 

Stroem Island  GRL006  -30.6166 68.0859 

Moraene 
Island, 
Taasiilaq  

GRL007  -35.7887 66.0208 

Nuuk Fjord St1  GRL008  -51.7491 64.0257 

Nuuk Fjord St2  GRL009  -51.7303 64.0614 

Nuuk Fjord St3  GRL010  -51.7614 64.0719 

Disko Brededal  GRL011  -53.1853 69.3172 

Disko Ippik  GRL012  -53.2417 69.3019 

Sisimiut St1  GRL013  -53.6022 66.8711 

Sisimiut St2  GRL014  -53.4946 66.8533 

Qaqortoq St1 
(Akia)  

GRL015  -46.1317 60.6753 

Qaqortoq St2  GRL016  -46.0990 60.7215 

Upernavik  GRL017  -56.5772 73.6703 

Brucebukta  NO002  78.4448 11.8602 

Luftskipodden  NO003  79.6812 10.7670 

Raudasandur  IS001  65.4628 -23.9555 

Budavik  IS002  64.8276 -23.3572 
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Bakkavik  IS003  64.1539 -22.0072 

Surtsey island 
East  

IS004  63.3058 -20.5962 

Surtsey island 
West  

IS005  63.3084 -20.6003 

Rekavik bak 
Hofn  

IS006  66.4312 -22.5162 

Vikur  IS007  66.1012 -20.2333 
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B Apppendix 

B.1 Cities and settlements on Greenland 

Number of inhabitants of cities on Greenland (https://stat.gl/): 
AAS: Aasiaat, ILU: Ilulissat, ILT Ittoqqortoormiit, KAT: Kangaatsiaq, MAN: Maniitsoq, NAN: Nanortalik, NAR: Narsq, 
NUK: Nuuk, PAA: Paamiut, QAQ: Qaqortoq, QAS: Qasigiannguit, QEG: Qeqertarsuaq, QNQ: Qaanaaq, SIS: Sisimiut, 
TAS: Tasiilaq, UPV: Upernavikm, UUM: Uummannaq 
Source: Compiled by BCSH 

https://stat.gl/
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B.2 Landfills and mining activities on Greenland 

Landfills with an area coverage above 2.500 m² are indicated by name (Correspondence WSP Arctic):  
ILU: Ilulissat, KAN: Kangerlussuaq, KAQ: Kangersuatsiaq, KUL: Kulusuk,, MAN: Maniitsoq, NAN: Nanortalik, NAR: Narsq, 
NUS: Nuussuaq, PAA: Paamiut, QAQ: Qaqortoq, QAS: Qasigiannguit, QEG: Qeqertarsuaq, QNQ: Qaanaaq, SIS: Sisimiut, 
TAS: Tasiilaq; 
Landfills in NUK: Nuuk, and UPV: Upernavik have smaller area coverage; Active mining activities are open pit mining. 
Source: Compiled by BCSH 
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C Appendix 

C.1 Daily current Intensity from the Copernicus data portal 

Daily current intensity from the Copernicus data portal used for the low-resolution model at 4 different time steps.  
Source: Compiled by BCSH 
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C.2 Daily current Intensity from the Norwegian Polar Institute 

Daily current Intensity from the Norwegian Polar Institute data portal used for the High-resolution model (API) at 4 different 
time steps. Please note different Spatial projection (south pointing to the lower-left corner). Source: Compiled by BCSH 
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D Appendix 

D.1 Photos of the litter objects measured with a GNSS receiver in the survey area Sisimiut 
Day 4 taken with a digital camera 

 
In red objects which were not found during the manual screening of the drone imagery. Source: Compiled by BCSH 
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In red objects which were not found during the manual screening of the drone imagery. Source: Compiled by BCSH 
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In red objects which were not found during the manual screening of the drone imagery. Source: Compiled by BCSH 
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In red objects which were not found during the manual screening of the drone imagery. Source: Compiled by BCSH  
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D.2 Photos of the litter objects measured with a GNSS receiver in the survey area Sisimiut 
Day 5 taken with a digital camera 

 
In red objects which were not found during the manual screening of the drone imagery. Source: Compiled by BCSH  
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In red objects which were not found during the manual screening of the drone imagery. Source: Compiled by BCSH 
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E APPENDIX 

E.1 Number of objects found for each detected category of materials 

Material glas metal plastic wood 

Number 1 4 357 165 

E.2 Size distribution of all plastic litter objects that were smaller than 1 m² 

 
Source: Compiled by BCSH 

E.3 Summary table of the model ranking by AIC for the effects of several parameters on 
the probability to identify the type of a plastic litter object. The model chosen for 
presentation is highlighted in bold letters. 

Model Variables df AIC 

Id_01 Area + Colour + Area * Colour 8 383.47 

Id_02 Area + Colour 5 393.72 

Id_03 Area 2 392.02 
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E.4 Summary table of the model ranking by AIC for the effects of several parameters on 
the likelihood of a plastic litter object to be identified as such with certainty. The 
model chosen for presentation is highlighted in bold letters. 

Model Variables df AIC 

Certain_01 Area + Colour + Area * Colour 8 348.51 

Certain_02 Area + Colour 5 361.07 

Certain_03 Area 2 379.76 

 

E.5 Residual scatterplot of the final model (id_02) describing the probability to identify 
the type of a plastic litter object. 

 
Source: Compiled by BCSH 
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E.6 Residual scatterplot of the final model (caertain_02) describing the likelihood of a 
plastic litter object to be identified as such with certainty 

 
Source: Compiled by BCSH 
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F APPENDIX - Confusion Matrices: (Semi-) Automatic Classification 

F.1 Greenland Random Forest v1 

 algae plastic rock sand shadow snow vegetation water wood sum PA [%] 

algae 416 3 11 5 34 30 0 1 0 500 83.2 

plastic 9 252 73 8 28 15 13 87 15 500 50.4 

rock 19 46 259 7 42 24 2 95 6 500 51.8 

sand 7 4 5 470 0 6 0 8 0 500 94.0 

shadow 22 15 18 1 365 23 3 5 0 452 80.8 

snow 38 6 22 26 14 386 0 12 0 504 76.6 

vegetation 0 9 0 0 24 0 488 0 0 521 93.7 

water 4 58 104 22 16 17 1 267 11 500 53.4 

wood 0 6 0 0 0 0 0 4 451 461 97.8 

sum 515 399 492 539 523 501 507 479 483 

OA: 75.6% 

UA [%] 80.8 63.2 52.6 87.2 69.8 77.0 96.3 55.7 93.4 
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F.2 Greenland Support Vector Machine v1 

 algae plastic rock sand shadow snow vegetation water wood sum PA [%] 

algae 432 2 7 10 27 22 0 0 0 500 86.4 

plastic 6 263 74 14 28 12 10 80 13 500 52.6 

rock 18 33 288 13 40 20 2 78 8 500 57.6 

sand 8 1 3 477 0 7 0 4 0 500 95.4 

shadow 22 11 13 2 378 20 4 2 0 452 83.6 

snow 40 4 33 25 15 380 2 5 0 504 75.4 

vegetation 0 4 1 0 22 0 494 0 0 521 94.8 

water 2 51 108 25 17 14 0 270 13 500 54.0 

wood 0 5 0 0 0 0 0 6 450 461 97.6 

sum 528 374 527 566 527 475 512 445 484 

OA: 77.3% 

UA [%] 81.8 70.0 54.6 84.3 71.7 80.0 96.5 60.7 93.0 
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F.3 Greenland Neuronal Network v1a 

 algae plastic rock sand shadow snow vegetation water wood sum PA [%] 

algae 433 8 5 11 21 0 20 0 2 500 86.6 

plastic 7 264 72 10 27 17 14 14 75 500 52.8 

rock 15 42 291 7 35 5 27 2 76 500 58.2 

sand 7 2 5 474 0 0 8 0 4 500 94.8 

shadow 22 13 15 1 370 0 22 5 4 452 81.9 

snow 0 8 0 0 0 448 0 0 5 461 97.2 

vegetation 33 6 21 19 16 0 399 3 7 504 79.2 

water 0 4 1 0 22 0 0 494 0 521 94.8 

wood 3 46 101 18 12 14 17 0 289 500 57.8 

sum 520 393 511 540 503 484 507 518 462 

OA:78.0% 

UA [%] 83.3 67.2 56.9 87.8 73.6 92.6 78.7 95.4 62.6 
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F.4 Greenland Neuronal Network v1b 

 algae plastic rock sand shadow snow vegetation water wood sum PA [%] 

algae 433 8 7 9 21 0 21 0 1 500 86.6 

plastic 7 264 73 10 26 18 12 13 77 500 52.8 

rock 16 37 284 9 38 7 26 3 80 500 56.8 

sand 7 1 7 471 0 0 10 0 4 500 94.2 

shadow 23 16 21 1 362 0 19 6 4 452 80.1 

snow 0 7 0 0 0 448 0 0 6 461 97.2 

vegetation 36 3 22 17 17 0 398 3 8 504 79.0 

water 0 6 1 0 22 0 0 491 1 521 94.2 

wood 3 48 103 20 10 13 19 1 283 500 56.6 

sum 525 390 518 537 496 486 505 517 464 

OA: 77.3% 

UA [%] 82.5 67.7 54.8 87.7 73.0 92.2 78.8 95.0 61.0 
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F.5 Greenland Neuronal Network v1c 

 algae plastic rock sand shadow snow vegetation water wood sum PA [%] 

algae 371 81 5 6 22 0 15 0 0 500 74.2 

plastic 3 463 3 4 8 2 10 3 4 500 92.6 

rock 14 390 61 5 11 0 12 2 5 500 12.2 

sand 9 76 0 408 0 0 6 0 1 500 81.6 

shadow 11 152 1 2 275 0 8 3 0 452 60.8 

snow 0 89 0 0 0 372 0 0 0 461 80.7 

vegetation 39 107 12 11 8 0 324 3 0 504 0.0 

water 0 42 0 0 22 0 1 456 0 521 0.2 

wood 1 422 8 11 3 2 8 0 45 500 0.0 

sum 448 1822 90 447 349 376 384 467 55 

OA: 62.5% 

UA [%] 82.8 25.4 67.8 91.3 78.8 98.9 84.4 97.6 81.8 
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F.6 Greenland Random Forest v2 
 

algae plastic rock sand snow vegetation water wood sum PA [%] 

algae 479 2 0 0 0 19 0 0 500 95.8 

plastic 6 339 64 6 1 7 1 76 500 67.8 

rock 0 27 414 18 1 3 3 34 500 82.8 

sand 0 0 8 491 0 0 0 1 500 98.2 

snow 0 1 6 0 486 0 0 7 500 97.2 

vegetation 12 3 2 0 0 482 0 2 501 96.2 

water 0 2 3 0 0 0 495 0 500 99.0 

wood 3 35 45 5 1 12 0 399 500 79.8 

sum 500 409 542 520 489 523 499 519 

OA: 89.6% 

UA [%] 95.8 82.9 76.4 94.4 99.4 92.2 99.2 76.9 
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F.7 Greenland Support Vector Machine v2 

  algae plastic rock sand snow vegetation water wood sum PA [%] 

algae 489 0 1 0 0 9 0 1 500 97.8 

plastic 7 320 76 5 1 11 1 79 500 64.0 

rock 0 29 414 26 1 3 3 24 500 82.8 

sand 0 1 3 496 0 0 0 0 500 99.2 

snow 0 1 8 0 485 0 0 6 500 97.0 

vegetation 16 3 3 0 0 475 0 3 500 95.0 

water 0 4 3 0 0 0 493 0 500 98.6 

wood 3 34 38 3 1 11 1 409 500 81.8 

sum 515 392 546 530 488 509 498 522 

OA: 89.5% 

UA [%] 95.0 81.6 75.8 93.6 99.4 93.3 99.0 78.4 
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F.8 Greenland Neuronal Network v2a 

  algae plastic rock sand snow vegetation water wood sum PA [%] 

algae 485 1 0 0 0 13 0 1 500 97.0 

plastic 6 360 56 2 2 8 1 65 500 72.0 

rock 0 37 413 21 2 2 0 25 500 82.6 

sand 0 1 6 493 0 0 0 0 500 98.6 

snow 0 0 6 0 486 0 0 8 500 97.2 

vegetation 10 3 1 0 0 483 0 4 501 96.4 

water 0 2 3 0 0 0 495 0 500 99.0 

wood 4 49 45 1 0 11 1 389 500 77.8 

sum 505 453 530 517 490 517 497 492 

OA: 90.1% 

UA [%] 96.0 79.5 77.9 95.4 99.2 93.4 99.6 79.1 
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F.9 Greenland Neuronal Network v2b 

  algae plastic rock sand snow vegetation water wood sum PA [%] 

algae 483 3 0 0 0 13 0 1 500 96.6 

plastic 4 418 31 4 2 5 1 35 500 83.6 

rock 0 105 349 22 0 1 1 22 500 69.8 

sand 0 3 10 487 0 0 0 0 500 97.4 

snow 0 7 10 0 477 0 0 6 500 95.4 

vegetation 13 6 2 0 0 480 0 0 501 95.8 

water 0 3 3 0 0 0 494 0 500 98.8 

wood 3 124 25 1 1 9 1 336 500 67.2 

sum 503 669 430 514 480 508 497 400 

OA: 88.1% 

UA [%] 96.0 62.5 81.2 94.7 99.4 94.5 99.4 84.0 
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F.10  Greenland Neuronal Network v2c 

  algae plastic rock sand snow vegetation water wood sum PA [%] 

algae 476 12 0 0 0 12 0 0 500 95.2 

plastic 4 476 5 4 0 3 0 8 500 95.2 

rock 0 297 172 23 0 0 1 7 500 34.4 

sand 0 17 8 474 0 0 0 1 500 94.8 

snow 0 19 5 0 474 0 0 2 500 94.8 

vegetation 13 36 0 0 0 452 0 0 501 90.2 

water 0 8 0 0 0 0 492 0 500 98.4 

wood 2 306 3 4 0 9 1 175 500 35.0 

sum 495 1171 193 505 474 476 494 193 

OA: 79.8% 

UA [%] 96.2 40.6 89.1 93.9 100.0 95.0 99.6 90.7 
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F.11  Greenland Random Forest v3 

 algae plastic rock sand shadow snow vegetation water wood sum PA [%] 

algae 486 2 0 0 3 0 9 0 0 500 97.2 

plastic 6 362 56 2 10 0 6 0 58 500 72.4 

rock 0 27 411 13 22 2 2 1 22 500 82.2 

sand 0 0 8 491 0 0 0 0 1 500 98.2 

shadow 8 15 15 1 459 0 8 4 2 512 89.6 

snow 0 2 0 0 0 497 0 0 1 500 99.4 

vegetation 12 1 4 0 7 0 475 0 4 503 99.4 

water 0 1 0 0 4 0 0 495 0 500 99.0 

wood 1 34 34 1 5 0 12 0 413 500 82.6 

sum 513 444 528 508 510 499 512 500 501 

OA:90.6% 

UA [%] 94.7 81.5 77.8 96.7 90.0 99.6 92.8 99.0 82.4 
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F.12  Greenland Support Vector Machine v3 

 algae plastic rock sand shadow snow vegetation water wood sum PA [%] 

algae 485 2 0 0 1 0 11 0 1 500 97.0 

plastic 6 360 64 3 9 0 5 0 53 500 72.0 

rock 0 33 403 24 19 0 1 0 20 500 80.6 

sand 0 0 6 494 0 0 0 0 0 500 98.8 

shadow 7 12 8 1 460 0 9 3 0 500 92.0 

snow 0 2 1 0 0 495 0 0 2 500 99.0 

vegetation 11 5 4 0 13 0 463 0 4 500 92.6 

water 0 1 0 0 2 0 0 497 0 500 99.4 

wood 1 36 44 0 2 0 6 0 411 500 82.2 

sum 510 451 530 522 506 495 495 500 491 

OA: 90.4% 

UA [%] 95.1 79.8 76.0 94.6 90.9 100.0 93.5 99.4 83.7 
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F.13  Greenland Neuronal Network v3a 

 algae plastic rock sand shadow snow vegetation water wood sum PA [%] 

algae 484 2 0 0 1 0 13 0 0 500 96.8 

plastic 4 358 57 4 10 0 6 1 60 500 71.6 

rock 0 40 392 20 22 1 1 0 24 500 78.4 

sand 0 1 5 494 0 0 0 0 0 500 98.8 

shadow 5 12 12 1 465 0 12 3 2 512 90.8 

snow 0 0 0 0 0 499 0 0 1 500 99.8 

vegetation 10 3 2 0 11 0 470 0 7 503 93.4 

water 0 1 0 0 3 0 0 496 0 500 99.2 

wood 1 52 35 0 2 0 6 0 404 500 80.8 

sum 504 469 503 519 514 500 508 500 498 

OA: 89.9% 

UA [%] 96.0 76.3 77.9 95.2 90.5 99.8 92.5 99.2 81.1 
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F.14  Greenland Neuronal Network v3b 

 algae plastic rock sand shadow snow vegetation water wood sum PA [%] 

algae 483 4 0 0 1 0 12 0 0 500 96.6 

plastic 3 448 19 3 5 1 5 0 16 500 89.6 

rock 0 195 249 17 24 0 2 0 13 500 49.8 

sand 0 11 6 482 0 0 0 0 1 500 96.4 

shadow 6 35 7 0 450 0 9 5 0 512 87.9 

snow 0 2 0 0 0 497 0 0 1 500 99.4 

vegetation 13 21 0 0 14 0 451 0 4 503 89.7 

water 0 0 0 0 6 0 0 494 0 500 98.8 

wood 2 205 21 0 3 0 6 0 263 500 52.6 

sum 507 921 302 502 503 498 485 499 298 

OA: 84.5% 

UA [%] 95.3 48.6 82.5 96.0 89.5 99.8 93.0 99.0 88.3 
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F.15  Greenland Neuronal Network v3c 

 algae plastic rock sand shadow snow vegetation water wood sum PA [%] 

algae 485 3 0 0 1 0 11 0 0 500 97.0 

plastic 4 420 33 4 6 0 6 0 27 500 84.0 

rock 0 101 326 20 32 1 1 1 18 500 65.2 

sand 0 0 7 493 0 0 0 0 0 500 98.6 

shadow 10 23 10 1 455 0 7 5 1 512 88.9 

snow 0 2 0 0 0 497 0 0 1 500 99.4 

vegetation 14 7 1 0 15 0 459 0 7 503 91.3 

water 0 1 0 0 3 0 0 496 0 500 99.2 

wood 1 116 30 0 3 0 12 0 338 500 67.6 

sum 514 673 407 518 515 498 496 502 392 

OA: 87.9% 

UA [%] 94.4 62.4 80.1 95.2 88.3 99.8 92.5 98.8 86.2 
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F.16  Svalbard Random Forest v1 

  plastic rock vegetation water wood sum PA [%] 

plastic 96 13 9 7 25 150 64.0 

rock 8 102 5 0 35 150 68.0 

vegetation 1 7 139 3 0 150 92.7 

water 2 0 5 143 0 150 95.3 

wood 19 14 7 0 110 150 73.3 

sum 126 136 165 153 170 
OA: 78.6% 

UA [%] 76.2 75.0 84.2 93.5 64.7 

F.17  Svalbard Random Forest v2 

  plastic rock vegetation water wood sum PA [%] 

plastic 95 13 15 0 27 150 63.3 

rock 15 121 0 0 14 150 80.7 

vegetation 6 0 142 0 2 150 94.7 

water 2 0 0 148 0 150 98.7 

wood 19 7 1 0 123 150 82.0 

sum 137 141 158 148 166 
OA: 85.9% 

UA [%] 69.3 85.8 89.9 100.0 74.1 

F.18  Svalbard Random Forest v3 

  plastic rock vegetation water wood sum PA [%] 

plastic 98 7 15 0 30 150 65.3 

rock 5 132 0 1 12 150 88.0 

vegetation 7 0 141 0 2 150 94.0 

water 0 0 0 150 0 150 100.0 

wood 21 3 3 0 123 150 82.0 

sum 131 142 159 151 167 
OA: 85.9% 

UA [%] 74.8 93.0 88.7 99.3 73.7 
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G APPENDIX - Spectral signal of drone reference data on Svalbard 

G.1 Average reflectance of input classes from the reference data of Svalbard 

 
Source: Compiled by BCSH 

G.2 Density functions of the reflectance extracted of the reference data on Svalbard 

 
Source: Compiled by BCSH 
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G.3 Density functions of the applied indices extracted of the reference data on Svalbard 

 
Source: Compiled by BCSH 

G.4 Density functions of HSV colour space extracted of the reference data on Svalbard 

 
Source: Compiled by BCSH 
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G.5 Density functions of LAB colour space extracted of the reference data on Svalbard 

 
Source: Compiled by BCSH 

G.6 Density functions of YcBcR colour space extracted of the reference data on Svalbard 

 
Source: Compiled by BCSH 



 

159 
 

H APPENDIX 

H.1 Spectral reflectance of WV3 imagery on Svalbard showing variance within the single 
classes 

 
Source: Compiled by BCSH 



 

160 
 

H.2 Spectral reflectance of WV3 imagery on Greenland showing variance within the single 
classes 

 
Source: Compiled by BCSH 
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